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Representing species interactions probabilistically (how likely are they to occur?) as opposed to

deterministically (are they occurring?) conveys uncertainties in our knowledge of interactions and information

on their variability. The sources of uncertainty captured by interaction probabilities depend on the method used

to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measurement

of interaction spatiotemporal variability. However, guidelines for the estimation and documentation of

probabilistic interaction data are lacking. This is concerning because our understanding and analysis of

interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We review how

probabilistic interactions are defined at different spatial scales, from local interactions to regional networks

(metawebs), with a strong emphasis on host-parasite and trophic (predatory and herbivory) interactions. These

definitions are based on the distinction between the realization of an interaction at a specific time and space

(local) and its biological or ecological feasibility (regional). Using host-parasite interactions in Europe, we

illustrate how these two network representations differ in their statistical properties, specifically: how local

networks and metawebs differ in their spatial and temporal scaling of probabilistic interactions, but not in their

taxonomic scaling. We present two approaches to inferring binary interactions from probabilistic ones that

account for these differences and show that systematic biases arise when directly inferring local networks from

metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic species

interaction networks that specify their type of interaction (local or regional), conditional variables and

uncertainty sources.
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Introduction1

Species interactions are variable and uncertain2

As we try to navigate global biodiversity change, filling in knowledge gaps about biodiversity becomes3

instrumental to monitoring and mitigating those changes (Abrego et al. 2021; Gonzalez & Londoño 2022;4

Hortal et al. 2015). However, cataloging species, populations and, in particular, ecological interactions (e.g.,5

predation, parasitism, and pollination) is a substantial challenge (Pascual et al. 2006; Polis 1991). There are6

methodological and biological constraints that hinder our ability to document species interactions, inevitably7

leading to uncertainty in our knowledge of interactions. For example, the spatial and temporal uncoupling of8

species (e.g., nocturnal and diurnal species coexisting in the same space with different daily activity timings,9

Jordano 1987) and the large number of rare and cryptic interactions in a community, contribute to these10

knowledge gaps by making it more difficult to observe interactions (Jordano 2016).11

Several conditions must be satisfied for an interaction to be observed locally. First, both species must have12

overlapping geographic ranges, i.e. they must co-occur within the region of interest (Cazelles et al. 2016;13

Morales-Castilla et al. 2015). Second, they must have some probability of meeting within a defined time frame14

(Poisot et al. 2015). Probabilities of interspecific encounters are typically low, especially for rare species with15

low abundances (Canard et al. 2012; Canard et al. 2014; Vázquez et al. 2007). The probability that species16

meet also depends on their biology, such as their phenology (Olesen et al. 2010; Singer & McBride 2012) and17

discoverability (Broom & Ruxton 2005). Finally, when species do come into contact, an interaction occurs only18

if their traits, such as their phenotypes (Bolnick et al. 2011; Gravel et al. 2013; Stouffer et al. 2011) and19

behavior (Choh et al. 2012; Pulliam 1974), are locally compatible in that specific environment (Poisot et al.20

2015). Because these conditions are not consistently met locally, there will inevitably be instances where21

interactions will be observed and others where they will not.22

Documenting the location and timing of interactions is difficult when accounting for the spatiotemporal23

variability of ecological interactions (Poisot et al. 2012, 2015). Knowing the biological capacity of two species24

to interact directly (via e.g., trophic interactions) is necessary but not sufficient for inferring their interaction at a25

specific time and space. Environmental factors, such as temperature (Angilletta et al. 2004), drought26

(Woodward et al. 2012), climate change (Araujo et al. 2011; Gilman et al. 2010; Woodward et al. 2010),27

habitat characteristics (e.g., presence of refuges where prey can hide from predators, Grabowski 2004), and land28

use change (Tylianakis et al. 2007), contribute to this spatiotemporal variability by impacting species29



abundance and traits. Interactions may also be influenced by a third species (e.g., a more profitable prey species,30

Golubski & Abrams 2011; Sanders & van Veen 2012). Even under favorable circumstances, there remains a31

possibility that the interaction does not occur locally, either due to the intricate nature of the system or simply32

by chance. If it does occur, it might go undetected, particularly if it happens infrequently. In this context, it is33

unsurprising that our knowledge of ecological interactions remains limited (Hortal et al. 2015) despite34

extensive biodiversity data collection (Schmeller et al. 2015).35

We distinguish the variability of interactions from their uncertainty. Interaction variability is defined as the36

changes in the occurrence or strength of interactions along spatial, temporal, or environmental axes (Poisot et al.37

2015). It is a property of interactions that should be quantified if we aim for a comprehensive understanding of38

ecological networks. Stochasticity is the inherent randomness or unpredictability of interactions that lead to this39

variability. Conversely, uncertainty is defined as a lack of knowledge about the occurrence of interactions.40

When using statistical models to infer interactions, uncertainty sources include input data, parameter, and model41

structure uncertainties (Simmonds et al. 2024). Input data uncertainty arises from our inability to empirically42

observe all interactions and from measurement errors in environmental and biological variables used for43

inference. Parameter uncertainty represents a plausible range of values for a parameter whose exact value is44

unknown. For example, we may calculate a range of plausible values for interaction variability (e.g., there could45

be a 50% certainty that an interaction occurs 50% of the time). Model structure uncertainty recognizes that46

different statistical models may adequately predict interactions. In contrast to variability, uncertainty can be47

reduced by sampling additional data (except for model uncertainty, which will persist regardless of sampling48

effort). Simmonds et al. (2024) underscores the importance of quantifying and reporting these diverse sources49

of uncertainty, alongside ensuring their appropriate propagation to model output (such as predicted interactions)50

and higher-level measures (such as network structure). While recognizing that these definitions may not be51

universally accepted, clarifying the distinction between variability and uncertainty enables us to better52

comprehend the sources of our knowledge gaps about ecological interactions.53

Species interactions as probabilistic objects54

The recognition of the intrinsic variability and uncertainty of species interactions has led ecologists to expand55

their representation of ecological networks to include a probabilistic view of interactions (Dallas et al. 2017; Fu56

et al. 2021; Poisot et al. 2016). This allows filling in the Eltonian shortfall (i.e., the gap between our current57

knowledge and a comprehensive understanding of interactions, Hortal et al. 2015) by modeling the probability58
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of occurrence of interactions (e.g., Gravel et al. 2019), which can be an important tool for directing efforts and59

taking action (Carlson et al. 2021), especially in places where access and resources for research are scarce. A60

probability is a measure of how likely a specific outcome is, based on both the uncertainty and variability of61

interactions. Interaction probabilities may be uncertain when there is a distribution of plausible probability62

values. The probabilistic representation of interactions has been applied to direct interactions, which are63

conceptually and mathematically analogous regardless of their biological type (e.g., predation and pollination).64

This is in contrast with indirect interactions (e.g., interspecific competition), which arise from distinct65

ecological processes and are often not directly observable (Kéfi et al. 2015, 2016). By accounting for the66

uncertainty and variability of direct interactions, networks of probabilistic interactions (which differ from67

probabilistic networks describing the uncertainty and variability of the whole network) may provide a more68

realistic portrait of species interactions.69

Probabilistic interactions differ from binary interactions. Networks of probabilistic interactions, within a70

Bayesian perspective, express our degree of belief (or confidence) regarding the occurrence or observation of71

interactions. In a frequentist approach, they represent the expected relative frequencies of interactions over72

many repeated trials or sampling events. In contrast, interactions are simply regarded as either occurring or not73

in networks of deterministic binary interactions. Based on the scale at which they are estimated, interaction74

probabilities may reflect our level of confidence in whether interactions will be observed, realized locally, or75

biologically feasible. Our level of confidence should be more definitive (approaching either 0 or 1) as we extend76

our sampling to a broader area and over a longer duration, thereby diminishing the uncertainty of our knowledge77

of interactions (but not necessarily the estimation of their variability). In the broadest sense, binary interactions78

are also a type of probabilistic interaction, in which the numerical value of an interaction is restrained to 079

(non-occurring) or 1 (occurring). In networks of probabilistic interactions, only forbidden interactions (i.e.,80

interactions prohibited by biological traits or species absence, Jordano et al. 2003; Olesen et al. 2010) have a81

probability value of zero, provided that intraspecific trait variability is considered (Gonzalez-Varo & Traveset82

2016). Understanding the nuances between probabilistic and binary interactions is essential for accurately83

modeling and interpreting ecological networks.84

The application and development of computational methods in network ecology, often based on a probabilistic85

representation of interactions, can alleviate (and guide) the sampling efforts required to document species86

interactions (Strydom et al. 2021). For example, statistical models can be used to estimate the uncertainty of87

pairwise interactions (Cirtwill et al. 2019) and the probability of missing (false negatives) and spurious (false88
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positives) interactions (Guimerà & Sales-Pardo 2009), helping us identify places where sampling is most89

needed to reduce this uncertainty. Statistical models can also predict networks without prior knowledge of90

pairwise interactions. They may do so using body size (Caron et al. 2024; Gravel et al. 2013; Petchey et al.91

2008), phylogeny (Elmasri et al. 2020; Strydom et al. 2022), or a combination of niche and neutral processes92

(Bartomeus et al. 2016; Pomeranz et al. 2019) for inference. Before being used to test ecological hypotheses,93

predicted networks must be validated against empirical data (Brimacombe et al. 2024), which could be sampled94

strategically to optimize the validation process. Topological null models, which generate networks of95

probabilistic interactions by preserving chosen characteristics of the adjacency matrix of binary interactions96

while intentionally omitting others (Bascompte et al. 2003; Fortuna & Bascompte 2006), are examples of97

common probabilistic interaction models. Null models can produce underlying distributions of network98

measures for null hypothesis significance testing. However, how the uncertainty of pairwise interactions99

propagates to network structure (i.e., community-level properties driving the functioning, dynamics, and100

resilience of ecosystems, McCann 2007; McCann 2011; Proulx et al. 2005; Rooney & McCann 2012) remains101

to be elucidated. Many measures have been developed to describe the structure (Poisot et al. 2016) and102

diversity (Godsoe et al. 2022; Ohlmann et al. 2019) of probabilistic interaction networks. These models and103

measures support the use of probabilistic interactions for the study of a wide range of ecological questions, from104

making better predictions of species distributions (Cazelles et al. 2016) to forecasting the impact of climate105

change on ecological networks (Gilman et al. 2010).106

We lack a clear understanding of probabilistic species interactions107

We still lack a precise definition of probabilistic interactions, which makes the estimation and use of these data108

more difficult. In this manuscript, we aim to take a step back by outlining different ways in which probabilistic109

interactions are defined and used in network ecology. We distinguish two broad categories of probabilistic110

interaction networks that necessitate distinct approaches: local networks describing probabilities of realized111

interactions, and regional networks (metawebs) describing probabilities of potential interactions. We highlight112

the distinctions in the ecological meaning of these two representations of interactions and examine their113

properties and relationships (particularly with space, time, and between each other).114

The lack of clear guidelines on the use of probabilistic interaction data is worrisome, as it affects both data115

producers and re-users who generate and manipulate these numbers. This is concerning because sampling116

strategies and decisions regarding network construction can affect our understanding of network properties117
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(Brimacombe et al. 2023). There is currently no reporting standard that could guide the documentation of all118

types of probabilistic interactions (Salim et al. 2022 discuss data standards for deterministic mutualistic119

networks). Clear reporting standards for probabilistic interactions would support more adequate manipulation120

and integration of interaction data from different sources and guard against possible misinterpretations arising121

from ambiguous definitions of probabilistic interaction networks. Data documentation should outline the nature122

(i.e., local or regional) and type (e.g., predatory or pollination) of interactions, provide information regarding123

the taxonomic level, identities, and characteristics (e.g., life stages) of the individuals involved in an interaction,124

present the mathematical formulation of probabilities, including clearly identified conditional variables (e.g.,125

spatial and temporal scales), and describe the methods and contexts (e.g., location, time, environmental126

conditions) in which interactions were estimated. Inadequately documented probabilistic interaction data should127

be used with caution when analyzing ecological networks. These broad principles remain relevant and128

applicable across different types of direct interactions. In the following sections, we discuss the definitions,129

conditions, and estimation of probabilistic interactions as we scale up from pairwise interactions to interactions130

within local and regional networks.131

Pairwise interactions: the building blocks of ecological networks132

What are probabilistic interactions?133

Consider a scenario where an avian predator has just established itself in a northern habitat home to a small134

rodent. Suppose their interaction has not been previously observed, either because these species have never135

co-occurred before or because previous sampling failed to detect an interaction despite their co-occurrence.136

What is the probability that the rodent is part of the diet of the avian predator, or put differently, what is the137

probability that they interact? Answering this question requires some clarification, as there are multiple ways to138

interpret and calculate interaction probabilities. We could calculate the probability that the traits of these139

species match, i.e. that the avian predator possesses the biological attributes to capture and consume the rodent.140

We could also calculate the probability that their traits support an interaction under the typical environmental141

conditions of the new habitat. For example, because avian predators hunt by sight, predation could be possible142

in the absence of snow but highly improbable when snow is present, as rodents may use it as a shelter to hide143

from predators. Finally, we could calculate the probability that the avian predator will consume the rodent at144

that particular location, for which the spatial and temporal boundaries need to be specified. The estimation of145
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the probability of interaction between these two species, whether through predictive models or informative prior146

probabilities, hinges on our understanding of these probabilities and the specific ecological processes we aim to147

capture.148

An important aspect to consider when estimating or using interaction probabilities is knowing if they describe149

the probability of potential or realized interactions, as these two types of interactions have distinct meanings and150

sources of uncertainty and variability. A potential (regional) interaction is defined as the biological or151

ecological capacity of two taxa to interact (i.e., the probability that they interact if they were to encounter each152

other, given sufficient time and appropriate environmental conditions) whereas a realized (local) interaction is153

the occurrence or observation of this interaction in a well-defined space and time (i.e., the probability that they154

interact locally). For two co-occurring taxa and over enough time, the probability of local interaction tends155

toward the probability of regional (potential) interaction. A longer duration increases the probability that156

species will eventually encounter each other and that local environmental conditions supporting an interaction157

will occur, provided that species have the biological capacity to interact. Recognizing the distinction between158

probabilistic regional and local interactions is crucial for accurately interpreting interaction probabilities in159

ecological networks.160

We use the terms metaweb (Dunne 2006) to designate regional networks of potential interactions and local161

networks (Poisot et al. 2012) for those of realized interactions. Metawebs are the network analogs of the species162

pool, where local networks originate from a subset of both species (nodes) and interactions (edges) of the163

regional metaweb (Saravia et al. 2022). Without clear documentation, it can be challenging to know if published164

probabilistic interaction networks describe local or regional interactions. When probabilistic local interactions165

are used and interpreted incorrectly as regional interactions (and conversely), this may generate misleading166

findings during data analysis. A better understanding of probabilistic local and regional interaction networks167

would facilitate a more adequate use of interaction data (e.g., when studying network-area relationships in local168

networks and metawebs) and prevent misinterpretations of the biological meaning of probabilistic interactions.169

What is the outcome of probabilistic interactions?170

The outcome of probabilistic interactions is usually binary171

Local networks and metawebs, like any type of network, are made of nodes and edges that may be represented172

at different levels of organization. The basic units of ecological networks are individuals that interact with each173
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other (e.g., by predation in food webs, Elton 2001), forming individual-based networks (Melián et al. 2011).174

The aggregation of these individuals into more or less homogeneous groups (e.g., populations, species, families,175

feeding guilds) allows us to represent nodes at broader taxonomic scales, which affects our interpretation of the176

properties of these systems (Guimarães 2020; Hemprich-Bennett et al. 2021).177

Ecologists have traditionally represented interactions (edges) as binary objects that were considered realized178

after observing at least one individual from group 𝑖 interact with at least another individual from group 𝑗. In an179

adjacency matrix 𝐵 of binary interactions, the presence or absence of an interaction 𝐵𝑖,𝑗 between two taxa can180

be viewed as the result of a Bernoulli trial 𝐵𝑖,𝑗 ∼ Bernoulli(𝜙), with 𝜙 = 𝑃(𝐵𝑖,𝑗 = 1) being the probability of181

interaction. This interaction probability characterizes our limited ecological knowledge and/or the intrinsic182

spatiotemporal variability of the interaction. It may be estimated through predictive models (e.g., those based183

on biological traits and species abundances) or expert (prior) knowledge about the interaction. In networks of184

probabilistic interactions, the edge values 𝑃(𝐵𝑖,𝑗 = 1) (which we denote as 𝑃(𝐵𝑖,𝑗) for simplicity and better185

readability) are probabilistic events whose only two possible outcomes are the presence (𝐵𝑖,𝑗 = 1) or absence186

(𝐵𝑖,𝑗 = 0) of an interaction between each pair of nodes. Depending on the type of probabilistic interaction187

network (local network or metaweb), the mathematical formulation and interpretation of stochastic parameters188

like 𝑃(𝐵𝑖,𝑗) can be linked to environmental and biological factors such as species abundances, species traits,189

area, and time, for example using logistic regression with continuous explanatory variables. This allows us to190

model the probability that at least two individuals interact under these conditions.191

The variability of an interaction determines the number of networks in which it occurs. This number can be192

predicted by using a Binomial distribution, assuming a constant interaction probability and independence193

between interactions in different networks (trials). When considering uncertainties around the estimation of194

𝑃(𝐵𝑖,𝑗), a Beta distribution may be used to represent the relative likelihood of different probability values. For195

example, when calculating the probability of interaction between two taxa based on their local abundances, any196

uncertainty in their abundances would introduce uncertainty in the interaction probability at the local scale. If197

we take into account the uncertainty of the interaction probability, a Beta-Binomial distribution can be used to198

predict the number of networks in which the interaction occurs. Empirically observing an interaction between199

two taxa at a given location and time provides important information that can be used to update previous200

estimates of 𝑃(𝐵𝑖,𝑗), informing us of the conditions that enabled them to interact locally. By sampling binary201

interactions in different contexts, we can thus estimate their local variability more precisely.202
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The outcome of probabilistic interactions may also be quantitative203

Even though binary interaction networks constitute a highly valuable source of ecological information (Pascual204

et al. 2006), they overlook interaction strengths. Represented in a quantitative adjacency matrix 𝑊 , interaction205

strengths better describe the energy flows, demographic impacts or frequencies of interactions between nodes206

(Berlow et al. 2004; Borrett & Scharler 2019), with 𝑊𝑖,𝑗 being a natural ℕ or real ℝ number depending on the207

measure. For example, they may represent local interaction rates (e.g., the flower-visiting rates of pollinators in208

a mutualistic network, Herrera 1989). Relative frequencies of interactions may be used as a measure of both the209

strength and probability of local interactions that are biologically feasible. When interaction strengths210

characterize predation pressure on prey, they can serve as parameters in a Lotka-Volterra model (e.g.,211

Emmerson & Raffaelli 2004). The extra amount of ecological information in quantitative networks typically212

comes at a cost of greater sampling effort and data volume (Strydom et al. 2021), especially when using213

predictive models that quantify the uncertainty and variability of quantitative interactions (Berlow et al. 2004).214

However, if two taxa are repeatedly found together without interacting, there may be more uncertainty about215

their capacity to interact than their interaction strength (which would assuredly be close to 0).216

Like binary interaction networks, the uncertainty and variability of interaction strengths can be represented217

probabilistically. Interaction strengths can follow many probability distributions depending on the measure. For218

instance, they can follow a Poisson distribution 𝑊𝑖,𝑗 ∼ Poisson(𝜆𝑖,𝑗𝑡0) when predicting the number of219

interactions between individuals during a time interval 𝑡0, with 𝜆𝑖,𝑗 being the expected rate at which individuals220

of taxa 𝑖 and 𝑗 interact (e.g., the expected number of prey 𝑗 consumed by all predators 𝑖). The Poisson221

distribution can also be 0-inflated when taking into account non-interacting taxa (e.g., Boulangeat et al. 2012222

employ a 0-inflated model to analyze species abundance following the modeling of species presence and223

absence), which constitute the majority of taxa pairs in most local networks (Jordano 2016). Regardless of the224

measure, estimating the uncertainty of quantitative interactions enables us to consider a range of possible values225

of interaction strength.226

Because of the methodological difficulties typically encountered when building deterministic quantitative227

networks, binary interaction networks, which are usually easier to sample (Jordano 2016) and predict (Strydom228

et al. 2021), have been more frequently studied and used. Mathematical models such as Ecopath (Plagányi &229

Butterworth 2004) partially mitigate these difficulties, but the number of biological parameters required to make230

predictions hinders their application in many systems. Moreover, most published probabilistic interaction231
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networks (e.g., Strydom et al. 2022) and methods (e.g., Poisot et al. 2016) involve probabilistic interactions232

whose outcome is binary. This underlines the need for better guidelines on the interpretation and manipulation233

of probabilistic interactions with binary outcomes first, to ensure the appropriate use of these networks and234

methods. For these reasons, the primary focus of the remainder of this manuscript is on the interpretation of235

interaction probabilities that determine the presence or absence of interactions, in both local networks and236

metawebs.237

Local networks: communities interacting in space and time238

What are local probabilistic interactions?239

Local networks of probabilistic interactions describe how likely taxa are to interact in a local context. Local240

interactions are contingent upon the environmental conditions experienced by the community and the matching241

of taxa’s local biological traits. In local networks, edges commonly represent our degree of belief that two taxa242

interact in nature, but can also represent the probability of empirically observing this interaction (Catchen et al.243

2023). Realized interactions occur locally without necessarily being observed (two locally interacting taxa may244

or may not be seen interacting during sampling), whereas observed interactions are those that have been locally245

recorded. Local interactions may thus arise from both the ecological (realized interactions) and sampling246

(observed interactions) processes taking place locally.247

Local networks are delineated within a particular location and time. We define space as the collection of248

geographic coordinates (𝑥, 𝑦, 𝑧), with (𝑥, 𝑦) representing longitude and latitude coordinates, and 𝑧 denoting249

either altitudes or depths. These point coordinates delineate the spatial boundaries of the system, which may be250

portrayed as a polyhedron. Ecological interactions may vary along latitudinal and altitudinal gradients, as251

evidenced by changes in hummingbird-plant interactions (Weinstein & Graham 2017a, b) and mosquito biting252

rates (e.g., Kulkarni et al. 2006) at different elevations. On the other hand, time is defined as the specific time253

period within which interactions were either observed or predicted. Even though space and time are continuous254

variables that should yield probability densities of interactions (i.e., relative likelihoods of interactions255

occurring at infinitesimal locations and instants in time), these definitions enable them to be conceptualized as256

distinct patches and time segments. Treating space and time as discrete dimensions aligns with the common257

sampling methods of ecological networks and provides probabilities of interactions, which can be obtained by258

integrating probability densities over space and time. We can quantify both an area 𝐴0 and a duration 𝑡0 with259
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these definitions. By studying probabilistic local interaction networks, we may thus conduct spatiotemporal260

analyses of local interactions (Box 1), enhancing our understanding of interactions occurring in distinct261

environmental contexts.262

What are local probabilistic interactions conditioned on?263

Local interactions may be conditioned on co-occurrence264

The probability that two taxa 𝑖 and 𝑗 interact in a local network 𝐿𝑥,𝑦,𝑧,𝑡 (spatial and temporal subscripts hereafter265

replaced by the shorter subscript 𝑘 for clarity) can be conditioned on many environmental and biological factors.266

In addition to network area (or volume) 𝐴0 and duration 𝑡0, they may be conditioned on taxa co-occurrence267

𝑋𝑖,𝑗,𝑘, which is usually Boolean, describing if the geographic distributions of both taxa overlap within the study268

area. As illustrated in Box 1, co-occurrence may be modeled probabilistically, in which case it may conform to269

a Bernoulli distribution 𝑋𝑖,𝑗,𝑘 ∼ Bernoulli(𝜙), where 𝜙 = 𝑃(𝑋𝑖,𝑗,𝑘 = 1). The probability of co-occurrence can270

be calculated using the individual (marginal) occurrence probabilities 𝑃(𝑋𝑖,𝑘 = 1) and 𝑃(𝑋𝑗,𝑘 = 1) (which we271

denote as 𝑃(𝑋𝑖,𝑘) and 𝑃(𝑋𝑗,𝑘) for simplicity and better readability). Given that taxa occurrences are not272

independent of each other, the probability of co-occurrence can be calculated by multiplying the probability of273

occurrence of one taxon by the probability of occurrence of the other given that the first one is present:274

𝑃(𝑋𝑖,𝑗,𝑘) = 𝑃(𝑋𝑖,𝑘, 𝑋𝑗,𝑘) = 𝑃(𝑋𝑖,𝑘 |𝑋𝑗,𝑘)𝑃(𝑋𝑗,𝑘). (1)

Note that to keep the text concise and readable, the probability notation used in this manuscript implicitly275

assigns a value of 1 to binary variables (e.g., in eq. 1 the term 𝑃(𝑋𝑖,𝑘 |𝑋𝑗,𝑘) is short for 𝑃(𝑋𝑖,𝑘 = 1|𝑋𝑗,𝑘 = 1)),276

unless stated otherwise. The value is only stated explicitly when it is 0 or when we wish to emphasize the value277

of 1.278

The probability of co-occurrence 𝑃(𝑋𝑖,𝑗,𝑘) (short for 𝑃(𝑋𝑖,𝑗,𝑘 = 1)) can be estimated through the application of279

joint species distribution models (e.g., Pollock et al. 2014), potentially taking into account biotic interactions280

(Staniczenko et al. 2017). Given that the probability that two non-co-occurring taxa interact locally is zero (i.e.,281

𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑋𝑖,𝑗,𝑘 = 0) = 0), the probability of local interaction can be obtained by multiplying the probability282

of interaction given co-occurrence with the probability of co-occurrence:283
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𝑃(𝐿𝑖,𝑗,𝑘 = 1) = 𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑋𝑖,𝑗,𝑘 = 1) × 𝑃(𝑋𝑖,𝑗,𝑘 = 1). (2)

Knowing that two taxa co-occur improves our estimation of the probability that they interact locally by284

mitigating a potential source of uncertainty.285

Local interactions may be conditioned on different environmental and biological factors286

Local interactions may also be conditioned on local environmental factors such as temperature (Angilletta et al.287

2004), precipitation (Woodward et al. 2012), habitat structure (Klecka & Boukal 2014), and the presence or288

abundance of other taxa in the network (Kéfi et al. 2012; Pilosof et al. 2017). We use the variable 𝐸𝑘 to289

describe the local environmental context in which interaction probabilities were estimated. For example, in a290

mesocosm experiment estimating interaction probabilities between predators and prey with and without refuges,291

𝐸𝑘 would represent the presence or absence of these refuges. Like co-occurrence, 𝐸𝑘 can also be modeled292

probabilistically when the variability or uncertainty of environmental factors is considered. 𝐸𝑘 represents all293

environmental variables that were taken into consideration when measuring interaction probabilities; it is294

therefore a subset of all environmental factors acting on ecological interactions.295

Other important factors that can impact interaction probabilities at the local scale are taxa local abundances 𝑁𝑖,𝑘296

and 𝑁𝑗,𝑘, which affect encounter probabilities (Canard et al. 2012), and local traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘 (e.g., movement297

rates, Beardsell et al. 2021; Cherif et al. 2024), which may also impact encounter probabilities as well as the298

ability of individuals to interact after encountering each other (Caron et al. 2024; Poisot et al. 2015). Local299

interaction probabilities may also be conditioned on higher-level properties of the community (i.e., the emerging300

structure of ecological networks), which we denote by 𝑓 (𝐿𝑘). Many topological null models (i.e., statistical301

models that randomize interactions by retaining certain properties of the network while excluding others)302

provide interaction probabilities from selected measures of network structure, such as connectance (Fortuna &303

Bascompte 2006) and the degree distribution (Bascompte et al. 2003). Biological factors, whether at the scale304

of individual taxa pairs or the community, may thus impact how we estimate and define interaction probabilities.305

Local interactions may be conditioned on biological feasibility306

Local interactions must be biologically feasible before occurring at a specific time and space. A local307

probability of interaction 𝑃(𝐿𝑖,𝑗,𝑘) (short for 𝑃(𝐿𝑖,𝑗,𝑘 = 1)) can be expressed as the product of the probability of308
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local interaction given that the two taxa can potentially interact 𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑀𝑖,𝑗 = 1) (which we sometimes309

denote as 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) for the sake of simplicity), with their probability of regional interaction 𝑃(𝑀𝑖,𝑗 = 1):310

𝑃(𝐿𝑖,𝑗,𝑘 = 1) = 𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑀𝑖,𝑗 = 1) × 𝑃(𝑀𝑖,𝑗 = 1), (3)

assuming that 𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑀𝑖,𝑗 = 0) = 0.311

Low values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) indicate that feasible interactions rarely occur locally, intermediate values around312

50% suggest considerable spatiotemporal variability, while high values indicate that regional interactions are313

nearly always realized locally. The local probability of interaction between a given pair of taxa is thus always314

equal to or below their probability of regional interaction. Taking into account biological feasibility in our315

estimation of local interaction probabilities leverages information from the metaweb to better predict the local316

occurrence of interactions (Dansereau et al. 2024; Strydom et al. 2021).317

Conditional variables must be explicitly stated318

The probability that two taxa 𝑖 and 𝑗 interact in a local network 𝐿𝑘 can thus be conditioned on their319

co-occurrence 𝑋𝑖,𝑗,𝑘 (or more explicitly on their occurrences 𝑋𝑖,𝑘 and 𝑋𝑗,𝑘), local abundances 𝑁𝑖,𝑘 and 𝑁𝑗,𝑘, local320

traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘, local environmental conditions 𝐸𝑘, network area (or volume) 𝐴0, time interval 𝑡0, network321

properties 𝑓 (𝐿𝑘), and biological feasibility 𝑀𝑖,𝑗 . When these conditions are absent from an expression, it may be322

because they have been marginalized over, which would be reflected in the overall uncertainty of the interaction.323

Interaction probabilities may also have been implicitly conditioned on missing variables (e.g., when estimated324

for specific values of these variables without explicitly including them as conditions), potentially impacting our325

interpretation. The local probability of interaction is described by the following expression when all of these326

conditional variables are included:327

𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑘, 𝑋𝑗,𝑘, 𝑁𝑖,𝑘, 𝑁𝑗,𝑘, 𝑇𝑖,𝑘, 𝑇𝑗,𝑘, 𝐸𝑘, 𝐴0, 𝑡0, 𝑓 (𝐿𝑘), 𝑀𝑖,𝑗). (4)

These conditional variables do not all need to be considered at all times. The representation of the local context328

in which probabilities are estimated and the variables that should be taken into consideration depend on the329

study system, the objectives of the study, and the resources available to the researchers. For example, Gravel et330

al. (2019) analyzed local European host-parasite networks of willow-galling sawflies and their natural enemies,331

14 of 45



all referenced in space and time, to infer probabilities of local interactions between co-occurring species. This332

was achieved by including temperature and precipitation as conditional variables in their models. In Box 2, we333

reuse these data to show the extent of variation among these local networks. We do so by measuring their334

dissimilarity with the regional network (metaweb aggregating all local interactions), both in terms of species335

composition and interactions. We built local probabilistic networks following eq. 3, showing that insufficient336

local variation (high probability of local interaction among potentially interacting species) results in an337

overestimation in both the number of interactions and connectance (i.e., the proportion of all of the338

non-forbidden links that are realized). This analysis was conducted for illustrative purposes, and other339

conditional variables could have been used to make these comparisons.340

When accounted for, conditional variables should be clearly described in the documentation of the data341

(Brimacombe et al. 2023), preferentially in mathematical terms to avoid any confusion in their interpretation342

and to limit manipulation errors during their re-use. For instance, ecologists should be explicit about their343

consideration (𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑗,𝑘)) or not (𝑃(𝐿𝑖,𝑗,𝑘)) of co-occurrence in their estimation of local interaction344

probabilities, as this can change our interpretation of the data and understanding of potential uncertainty345

sources. Reporting the scale and level of aggregation of the data enables us to more accurately study the346

underlying ecological processes (Clark et al. 2011) and manipulate or propagate uncertainty to different347

aggregation levels (Simmonds et al. 2024). In Tbl. 1, we present examples of studies that used different348

expressions of probabilistic interactions with different conditional variables. We included in this table the349

probability of empirically observing an interaction that is realized locally 𝑃(𝑂𝑖,𝑗,𝑘 |𝐿𝑖,𝑗,𝑘) to underscore the350

distinction between local observations and actual realizations of interactions.351
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Table 1: Mathematical expressions of probabilistic interactions. The probability of interaction between two
taxa 𝑖 and 𝑗 is interpreted differently in a local network 𝐿𝑘 of realized interactions, a local network 𝑂𝑘 of observed
interactions, a metaweb 𝑀 of potential interactions (representing the biological feasibility of interactions), and
a metaweb 𝑀∗ of potential interactions (representing the ecological feasibility of interactions). Each expression
emphasizes a different conditional variable, the ellipsis serving as a placeholder for other variables not explicitly
stated in the expression. The outcome of each of these probabilistic events, along with common models used
for estimation, is presented alongside examples of studies that employed them (with specific variables indicated
in parentheses, when applicable). The study marked with an asterisk has been conducted on binary interaction
networks. The boxes in our study that discuss these expressions are also specified.

Expression Type Outcome Common models Reference

𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑘, 𝑋𝑗,𝑘, ...) local realization of the interaction

given taxa co-occurrence

species distribution

models

Gravel et al. (2019),

Dansereau et al.

(2024), Boxes 1 and 5

𝑃(𝐿𝑖,𝑗,𝑘 |𝑁𝑖,𝑘, 𝑁𝑗,𝑘, ...) local realization of the interaction

given taxa abundances

neutral models Canard et al. (2014)

𝑃(𝐿𝑖,𝑗,𝑘 |𝑇𝑖,𝑘, 𝑇𝑗,𝑘, ...) local realization of the interaction

given local traits

trait matching

models

Caron et al. (2024),

Box 4

𝑃(𝐿𝑖,𝑗,𝑘 |𝐸𝑘, ...) local realization of the interaction

given local environmental

conditions

environmental-

based models

Gravel et al. (2019)

(temperature and

precipitation)

𝑃(𝐿𝑖,𝑗,𝑘 |𝐴0, ...) local realization of the interaction in

a given area or volume

spatial models Galiana et al. (2018)

*, Box 3

𝑃(𝐿𝑖,𝑗,𝑘 |𝑡0, ...) local realization of the interaction

during a given time period

temporal models Weinstein & Graham

(2017a), Boxes 1 and

3

𝑃(𝐿𝑖,𝑗,𝑘 |𝑓 (𝐿𝑘), ...) local realization of the interaction

given network structure

topological models Fortuna & Bascompte

(2006) (connectance),

Stock et al. (2017)

𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗 , ...) local realization of the interaction

given that it is biologically

feasible

spatiotemporal

models

Dansereau et al.

(2024), Boxes 2, 3,

and 5
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Expression Type Outcome Common models Reference

𝑃(𝑂𝑖,𝑗,𝑘 |𝐿𝑖,𝑗,𝑘, ...) local observation of the interaction

given that it is realized locally

sampling models Catchen et al. (2023)

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) regional biological feasibility of the

interaction given regional

traits (non-forbiddenness)

trait matching

models

Strydom et al. (2022),

Box 4

𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸) regional ecological feasibility of the

interaction given regional

traits and environmental

conditions

trait matching and

environmental-

based models

this study

How are local probabilistic interactions estimated?352

Various statistical models can be used to estimate local interaction probabilities, some of which are presented in353

Tbl. 1. These models can be based on multiple conditional variables. Although these variables correspond to354

distinct ecological inquiries or mechanisms related to ecological interactions, they may covary with each other,355

such as the possible dependence of 𝑋𝑖,𝑗,𝑘 and 𝐸𝑘 on spatial and temporal scales. When estimating interaction356

probabilities using e.g. a generalized linear model with multiple explanatory variables that might not all be357

independent, it may become important to address collinearity. In such cases, it may be necessary to use variable358

selection techniques before fitting the model to data to mitigate this issue. Other challenges and opportunities359

associated with predictive models of species interactions are reviewed in Strydom et al. (2021).360

When using multiple competing models to estimate local interaction probabilities, rather than selecting a single361

model that best fits the data, model averaging may enhance our estimations. Model weights represent the362

probability that each model is the most suitable for explaining the data, and may be measured using Akaike363

weights (Burnham & Anderson 2004; Wagenmakers & Farrell 2004). For instance, given two competing364

models 𝑚𝑜𝑑1 and 𝑚𝑜𝑑2 with respective probabilities (or weights) 𝑃(𝑚𝑜𝑑1) and 𝑃(𝑚𝑜𝑑2), the average365

probability of interaction 𝑃(𝐿𝑖,𝑗,𝑘) can be calculated as follows:366

𝑃(𝐿𝑖,𝑗,𝑘) = 𝑃(𝐿𝑖,𝑗,𝑘 |𝑚𝑜𝑑1) × 𝑃(𝑚𝑜𝑑1) + 𝑃(𝐿𝑖,𝑗,𝑘 |𝑚𝑜𝑑2) × 𝑃(𝑚𝑜𝑑2). (5)
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Model averaging takes into account the uncertainty of model structure in our estimation of local interaction367

probabilities. Regardless of the model used for prediction, it is crucial to quantify and disclose all sources of368

uncertainty to understand better the validity and limitations of our predictions (Simmonds et al. 2024).369

Box 1: A spatiotemporally explicit model of interactions

Ecologists may resort to predictive models to reconstruct local networks across time and space. We

introduce and develop a simple generative Bayesian model for probabilistic local interactions, which

explicitly accounts for their spatiotemporal variability. Our model is not designed for regional interactions,

which do not vary spatially nor temporally. Rather, it could prove valuable for generating new data on

local interactions across time and space, following parameter inference.

As indicated by eq. 2, the probability that two taxa 𝑖 and 𝑗 interact locally can be obtained by multiplying

their probability of interaction given co-occurrence with their probability of co-occurrence. The

probability of interaction given co-occurrence can be made temporally explicit by modeling it as a Poisson

process with rate parameter 𝜆𝑘. This parameter represents the local expected frequency of interaction

between co-occurring taxa. The probability that two co-occurring taxa interact at least once during a time

interval 𝑡0 can be given by:

𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑋𝑖,𝑗,𝑘 = 1) = 1 − 𝑒−𝜆𝑘𝑡0 , (6)

which tends toward 1 as 𝑡0 → ∞ if 𝜆𝑘 > 0. In other words, two co-occurring taxa with a nonzero rate of

interaction will inevitably interact at least once in a sufficiently long time interval.

The occurrence of an interaction between 𝑖 and 𝑗 may be the result of a Bernoulli trial with parameter

𝜙 representing the probability of interaction 𝑃(𝐿𝑖,𝑗,𝑘 = 1). A Bayesian model can be built using the

preceding equations to generate new interaction data, following the inference of the 𝜆𝑘 and 𝜙 parameters.

𝐿𝑖,𝑗,𝑘 ∼ Bernoulli(𝜙) (7)

𝜙 = 𝑃(𝑋𝑖,𝑗,𝑘 = 1)(1 − 𝑒−𝜆𝑘𝑡0) (8)

𝑃(𝑋𝑖,𝑗,𝑘) ∼ Beta(2, 2) (9)
370
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𝜆𝑘 ∼ Exponential(2) (10)

In Fig. 1, we show the variation in the probability of interaction under different parameter values. In the

right panel, we notice that the probability of interaction always converges toward the probability of co-

occurrence 𝑃(𝑋𝑖,𝑗,𝑘 = 1), for all positive values of the interaction rate.

Figure 1: Parameters of the spatiotemporally explicit model of interactions. (a) Probability of local
interaction 𝜙 = 𝑃(𝐿𝑖,𝑗,𝑘) (short for 𝑃(𝐿𝑖,𝑗,𝑘 = 1)) given by the process model (eq. 8) under different values
of 𝜆𝑘 (interaction rate) and 𝑃(𝑋𝑖,𝑗,𝑘) (probability of co-occurrence, short for 𝑃(𝑋𝑖,𝑗,𝑘 = 1)), with 𝑡0 = 1
(duration). The probability of local interaction represents the probability that the two taxa will interact
at least once within the given time interval. Parameters 𝑡0 and 𝜆𝑘 have complementary units (e.g., 𝑡0 in
months and 𝜆𝑘 in number of interactions per month). The parameter values used in the right panel are
denoted by the white stars. (b) Scaling of the probability of interaction with the duration parameter 𝑡0, for
different values of 𝜆𝑘 and 𝑃(𝑋𝑖,𝑗,𝑘).

This model can be customized in different ways, such as linking both parameters to specific environmental

or biological variables. For instance, the probability of co-occurrence could be modeled as a function of

climatic variables, while the interaction rate parameter could be modeled based on taxa abundances.
371

Box 2: Dissimilarity of local host-parasite networks

We present a way to assess local network variability and dissimilarity regarding species composition and

interactions. We do so by comparing local tripartite host-parasite networks to the metaweb using data

from Kopelke et al. (2017). This collection of networks consists of interactions between willows, willow-

galling sawflies, and their natural enemies sampled across Europe. All data manipulation and methods
372
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are described in Appendix 1. All code and data to reproduce these analyses are available on Zenodo

(https://doi.org/10.5281/zenodo.12802326).

In Fig. 2a-b, we show how the dissimilarity between the metaweb of binary interactions and aggregated

local networks changes with the number of sampled local networks. We compared the metaweb and the

aggregated local networks using the dissimilarity in species composition (𝛽𝑆, Fig. 2a) and the dissimilarity

of interactions between common species (𝛽𝑂𝑆, Fig. 2b) indices (Poisot et al. 2012). Expectedly, local

networks are highly dissimilar from the metaweb in terms of species composition, especially when only a

limited number of sites have been sampled. This is because few species from the metaweb (species pool)

occur locally. Moreover, we observe a peak in the dissimilarity of interactions between common species at

intermediate sampling levels. This suggests that species are collected faster than their interactions. With

a limited number of sampled local networks, few regional interactions are observed locally. Adding more

sites brings new species, but not always their interactions. Quadratic relationships of network properties

with sampling effort were also observed by McLeod et al. (2021).
373
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Figure 2: Network accumulation curves. (a) Dissimilarity in species composition and (b) dissimilarity
of interactions between common species between aggregated local networks and the metaweb of binary
host-parasite interactions. In both panels, the colored line represents the median dissimilarity across
simulations and the grey areas cover the 50% and 95% percentile intervals. (c) Scaling of the number
of interactions and (d) scaling of connectance with the number of sampled (aggregated) binary and
probabilistic local interaction networks. For a better comparison with binary interactions, local networks
of probabilistic interactions were derived from a metaweb of probabilistic interactions with a false positive
and false negative rate of zero. A specific value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) (the local probability of interaction
among potentially interacting species) was used for all non-aggregated local networks within a particular
curve. Aggregated local networks were obtained by sequentially and randomly selecting a number of local
networks and aggregating both their species and interactions (with the value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) increasing
in aggregated local networks of probabilistic interactions).

Next, we investigate how the number of local interactions and connectance scale with the number of

sampled (aggregated) local networks of probabilistic or binary interactions (Fig. 2c-d). By comparing

the scaling relationships observed in local networks of binary and probabilistic interactions, we observe

that high values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) (short for 𝑃(𝐿𝑖,𝑗,𝑘 = 1|𝑀𝑖,𝑗 = 1)) lead to systematic overestimations

in the number of interactions and connectance, especially when 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1 (i.e., when local and
374
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regional probabilities of interactions are equivalent). This suggests that high values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) do

not adequately capture the variability of local interactions. However, these biases tend to diminish as the

number of sampled networks increases, indicating that most interactions are eventually captured when

𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) is high. In contrast, low values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) lead to missing interactions, resulting in an

underestimation of the number of interactions and connectance. These results underscore the importance

of using the appropriate level of variability when estimating local interaction probabilities.
375

Metawebs: regional catalogs of interactions376

What are regional probabilistic interactions?377

Metawebs (Dunne 2006) are networks of potential interactions over broad spatial, temporal, and taxonomic378

scales (e.g., food webs at the continental scale). They correspond to the temporal and spatial asymptotes of379

local interactions (Box 1). Potential interactions describe the biological capacity of taxa to interact under380

optimal or feasible environmental conditions given enough time, which is typically assessed at the regional381

scale. Metawebs of probabilistic interactions are particularly useful in situations where there is uncertainty in382

the ability of taxa to interact (Strydom et al. 2023). They may also be used as informative priors of local383

interactions. Therefore, building a metaweb of probabilistic interactions may be an important first step before384

predicting networks at finer scales.385

In contrast to local networks, where interaction probabilities arise from the variability of interactions and the386

lack of information on the conditions, interaction probabilities in metawebs solely result from a lack of387

knowledge. This uncertainty arises due to insufficient interaction data, especially for taxa that have not yet been388

observed to co-occur, and uncertainties in trait-matching models. As data accumulates, interactions in389

metawebs should tend towards binarity, either taking a value of 1 (observing an interaction at least once) or390

approaching 0 (repeatedly failing to observe an interaction between co-occurring taxa). Confidently observing391

an interaction once confirms its biological feasibility, but failing to observe it (even on multiple occasions) does392

not ensure that it is non-feasible (e.g., due to false negatives, Catchen et al. 2023). While local interaction393

probabilities are irreducible because of local variability, the uncertainty of regional interactions reduces to 0394

with the addition of information. Moreover, although neutrally forbidden interactions (i.e., forbidden395

interactions between rare species, Canard et al. 2012) have low probability values in local networks, they would396
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have a probability of 1 in the metaweb (this is because the species’ traits could support an interaction if they397

were to encounter each other at high enough abundances). Likewise, non-co-occurring taxa may have a398

non-zero probability of interaction in the metaweb. Regional interaction probabilities are thus fundamentally399

different from local interaction probabilities, both in terms of uncertainty sources and probability values.400

The extent of sampling effort influences our evaluation of probabilities of regional interactions, as sampling401

over a larger area or for a longer duration enables us to capture a greater number of interactions (Box 1, McLeod402

et al. 2021). However, in contrast with local networks of probabilistic interactions, regional interactions are not403

evaluated for any particular local context (they are rather a collection of local contexts), which impacts how they404

scale with space and time (notably through the extent of the region covered and sampling duration). In Box 3,405

we discuss the differences in spatial and temporal scaling of regional interactions compared to local406

interactions. We do so using the host-parasite networks of Kopelke et al. (2017) as an illustration of spatial407

scaling (Box 3). Understanding the effect of spatial and temporal scales (including sampling effort) on local and408

regional interaction probabilities is important for effectively propagating uncertainty across scales and409

highlighting the fundamental differences between these two types of networks.410

What are regional probabilistic interactions conditioned on?411

Regional interactions describing biological feasibility are conditioned on traits412

Potential interactions describe what we refer to as the biological feasibility of interactions, which is based solely413

on the regional traits distributions 𝑇𝑖 and 𝑇𝑗 of taxa 𝑖 and 𝑗, respectively. We define regional traits distributions414

as the range of phenotypes that a taxon can express across various environments. Local traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘,415

which vary spatially and temporally because of phenotypic plasticity and local environmental variability (Berg416

& Ellers 2010), are a subset of regional traits. A probability of potential interaction in a metaweb 𝑀 describing417

the biological feasibility of interactions may be expressed as:418

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗), (11)

which, in contrast with local networks, is not conditioned on any spatial, temporal, co-occurrence or419

environmental variables (Tbl. 1). Because phylogenetically close species often share similar traits, we should420

expect that closely related species will have similar interacting partners. We can thus use phylogeny to predict421
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species traits and infer regional interactions (Eklöf & Stouffer 2016; Stouffer et al. 2012; Strydom et al. 2022).422

The taxonomic level at which interactions are evaluated also influences the distribution of regional traits.423

However, as explained in Box 4, there is no fundamental difference in the taxonomic scaling of regional and424

local interactions (i.e., how interaction probabilities change with taxonomic level) because they both depend on425

trait aggregation.426

The biological feasibility of interactions expresses our degree of belief that there exists at least one combination427

of phenotypes that could support a specific type of interaction if they were to encounter each other, assuming428

they had enough time to interact. Evaluating this probability is conducted without incorporating the429

environmental conditions under which they encounter each other into the model. It is the complement of the430

probability 𝑃(𝐹𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) of forbidden interactions (i.e., the probability that their traits do not support an431

interaction), which is based uniquely on biological traits:432

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) = 1 − 𝑃(𝐹𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (12)

For example, let 𝑖 be a western diamondback rattlesnake (Crotalus atrox) and 𝑗, a wood lemming (Myopus433

schisticolor). These two taxa never co-occur, the rattlesnake being adapted to warm regions of North America434

(Castoe et al. 2007) and the lemming, to northern habitats of Eurasia (Fedorov et al. 2008). As we lack direct435

observations of an interaction between these two species, we have to rely on expert knowledge or trait-matching436

models to estimate their probability of potential interaction. To accurately estimate this probability using437

trait-matching models, it is crucial to ensure that the set of traits considered reflects the overall traits438

distributions of both taxa. We could for instance consider their average body mass and the average phylogenetic439

distance of lemmings to rattlesnakes’ prey. Doing so, we might find a high probability of potential interaction440

based on these traits. This example illustrates how regional interactions describing biological feasibility may be441

estimated solely based on traits, without taking into account environmental conditions (which could be442

important to consider when e.g. an interaction is forbidden at all temperature values).443

Regional interactions describing ecological feasibility are conditioned on traits and environmental444

conditions445

The biological feasibility of interactions should not be confused with what we refer to as the ecological446

feasibility of interactions. A probability of potential interaction in a metaweb 𝑀∗ describing the ecological447
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feasibility of interactions may be expressed as:448

𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸), (13)

where 𝐸 is the environmental conditions under which potential interactions are evaluated (Tbl. 1). Unlike 𝐸𝑘,449

these environmental conditions do not represent conditions occurring at specific locations. Ecological450

feasibility represents the probability that two taxa interact if they were to encounter each other under given451

environmental conditions, assuming they had enough time to interact. Incorporating environmental conditions452

into a trait-matching model may be important when there is high covariance between the environment and traits.453

For instance, in our example involving rattlesnakes and lemmings, the probability of potential interaction454

between these two species may be low in most environmental conditions. Western diamondback rattlesnakes455

may be unactive under low temperatures (Kissner et al. 1997), whereas wood lemmings may have low tolerance456

to high temperatures (Kausrud et al. 2008). The probability that an interaction is ecologically feasible is always457

lower than the probability that it is biologically feasible, even across all environmental conditions:458

𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) = ∫𝐸 𝑃(𝑀∗

𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸)𝑔(𝐸|𝑇𝑖, 𝑇𝑗)𝑑𝐸 ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗), (14)

where 𝑔(𝐸|𝑇𝑖, 𝑇𝑗) is the conditional probability density function of 𝐸 given 𝑇𝑖 and 𝑇𝑗 .459

The difference between these two regional probabilities of interaction (across all environmental conditions)460

arises because the biological feasibility of an interaction is a prerequisite for its ecological feasibility. In other461

words, biological feasibility is necessary but not sufficient for an interaction to be ecologically feasible. Our462

discussion of metawebs focuses on the biological feasibility of interactions since most methods developed for463

inferring probabilities of regional interactions do not explicitly take into account environmental conditions (e.g.,464

Strydom et al. 2022).465

How are regional probabilistic interactions estimated?466

Starting from a selected set of taxa, which are usually distributed within a broad region of interest, metawebs467

can be built using different data sources, including literature review (e.g., Maiorano et al. 2020), aggregated468

interaction data (e.g., Gravel et al. 2019; Saravia et al. 2022), trait-matching models (e.g., Shaw et al. 2024;469

Strydom et al. 2022), and expert knowledge, which is not a trivial challenge. Every pair of taxa that have470
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confidently been observed to interact at least once can be given a probability of 1 (i.e., 𝑃(𝑀𝑖,𝑗) = 1) since we471

know that they can interact. This differs from local networks of probabilistic interactions, where interaction472

events may remain stochastic (i.e., 𝑃(𝐿𝑖,𝑗,𝑘) < 1) even after empirically observing interactions due to their473

spatiotemporal variability. Interactions that were never observed typically have low probability values in local474

networks and vary from low to high values in metawebs, contingent upon taxa traits distributions (reaching 0 for475

forbidden links). The aggregation of model predictions and data from different sources thus tends to raise the476

number of potential interactions in metawebs.477

When using local interaction data to estimate probabilities of regional interactions, repeatedly failing to observe478

an interaction between two co-occurring taxa should decrease the probability that the interaction is biologically479

feasible. Using Bayes’ theorem, the probability that the interaction is biologically feasible given that it was480

never observed locally, 𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0), may be calculated as follows:481

𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0) =
𝑃(𝑂𝑖,𝑗,𝑘 = 0|𝑀𝑖,𝑗 = 1) × 𝑃(𝑀𝑖,𝑗 = 1)

𝑃(𝑂𝑖,𝑗,𝑘 = 0) . (15)

The reduction in the probability of regional interaction after considering that it was never observed locally (i.e.,482

𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0) < 𝑃(𝑀𝑖,𝑗 = 1)) occurs because 𝑃(𝑂𝑖,𝑗,𝑘 = 0|𝑀𝑖,𝑗 = 1) must be lower than 𝑃(𝑂𝑖,𝑗,𝑘 = 0),483

i.e. there is a higher chance of observing an interaction when it is biologically feasible.484

Observations of interactions may be false positives because of observation errors due to taxonomic485

misidentifications and ecological misinterpretations, such as those involving phylogenetically close species or486

cryptic species and interactions (Pringle & Hutchinson 2020). Likewise, forbidden interactions may be false487

negatives, e.g. if they have been evaluated based on unrepresentative or incomplete traits distributions.488

Employing Bayesian models proves valuable when estimating interaction probabilities in metawebs (e.g.,489

Bartomeus et al. 2016; Cirtwill et al. 2019). This improvement is achieved by updating prior information490

regarding the feasibility of interactions (e.g., experts’ prior assessments of interaction probabilities) with491

empirical data on interactions and traits. By improving our estimation of potential interaction probabilities, we492

may build more reliable metawebs that adequately reflect our uncertainty on the biological feasibility of493

interactions.494
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Box 3: Spatial and temporal scaling of interactions

Local networks and metawebs have distinct relationships with space (area or volume) and time (sampling

effort or duration). Local probabilities of interaction scale both spatially and temporally, because local

interactions have more opportunities to be realized in larger areas and longer durations. In a larger

sampling area and duration, we increase the likelihood of sampling favorable conditions for interactions

to occur. If a local network of probabilistic interactions 𝐿1 with an area 𝐴1 is compared to a larger

network 𝐿0 with an area 𝐴0, and 𝐴1 is entirely nested within 𝐴0, interaction probabilities should be

lower in the smaller network, i.e. 𝑃(𝐿𝑖,𝑗,1|𝐴1 < 𝐴0) ≤ 𝑃(𝐿𝑖,𝑗,0|𝐴0). However, if 𝐴1 and 𝐴0 are disjoint,

interaction probabilities could be higher in the smaller area, contingent upon local environmental and

biological conditions. In contrast, regional probabilities of interaction do not scale with space and time.

The probability of two taxa potentially interacting should be the same in all metawebs in which they are

present regardless of scale, provided that the data and methods used for estimation are consistent. This is

because they depend solely on the biological capacity of two taxa to interact, regardless of co-occurrence

and local environmental conditions. However, probabilities of regional interactions may change, tending

to become more definitive, with increased sampling effort.

In Fig. 3, we show how the expected number of local host-parasite interactions scales with the spatial

boundary of the network (represented by an expanding latitudinal window) in comparison with regional

interactions. We do so using the host-parasite networks of Kopelke et al. (2017). The increase in the

number of regional interactions is due to the inclusion of more species in a larger area. To ensure a

conservative comparison between aggregated local and regional networks, we employed equal interaction

probabilities (i.e., using 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1) in both types of network. This means that local interaction

probabilities could not increase further when aggregating them. Despite this, we notice that the total

number of regional interactions scales more rapidly than local interactions. This is because numerous

regional interactions involve species that never co-occur, and as a result, these interactions are not captured

in local networks. All data manipulation and methods are described in Appendix 1.
495
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Figure 3: Spatial scaling of interactions. Expected number of host-parasite interactions in a network
aggregating all (a) local and (b) regional probabilistic interactions within a latitudinal window of a given
width. Every dashed curve corresponds to a different window centered at a given latitude (color bar),
with the pink solid line representing the median number of interactions across windows. Heatmaps of the
expected number of (c) local and (d) regional interactions found in windows of specified width and position
(central latitude). Probabilities of regional interactions were obtained with a false positive rate of 5% and
a false negative rate of 10%. Local probabilistic interactions were derived from regional probabilistic
interactions by setting the value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) (the local probability of interaction among potentially
interacting species) to 1. Aggregated local networks were obtained by aggregating both the species and
interactions found within a particular latitudinal window, with the values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) remaining at
their maximum value of 1.

496

Box 4: Taxonomic scaling of interactions

Given that our interpretation of the properties of ecological networks depends on their taxonomic level

(Melián et al. 2011), investigating the taxonomic scaling of interactions (i.e., how interaction probabilities
497
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change with taxonomic level) is important. There are no inherent differences between the taxonomic

scaling of local and regional interactions. The taxonomic level of interactions impacts the definition

of nodes. Local and regional interaction probabilities are not directly conditioned on taxonomic scale.

However, some conditional variables (e.g., trait distribution) may covary with taxonomic scale. In such

cases, local and regional interaction probabilities would change taxonomically following the scaling of

these variables.

In both types of interactions, transitioning to a broader level of organization (e.g., from a species-level

network 𝑆 to a genus-level network 𝐺) can be done using interaction probabilities from finer scales. For

example, in a network with 𝑛1 species of genus 𝑔1 and 𝑛2 species of genus 𝑔2, one can calculate the

probability that at least one species from genus 𝑔1 interacts with at least one species from genus 𝑔2 (i.e.,

the probability that the genus-level interaction occurs) as follows:

𝑃(𝐺𝑔1,𝑔2) = 1 −
𝑛1
∏
𝑖=1

𝑛2
∏
𝑗=1

(1 − 𝑃(𝑆𝑔1,𝑖,𝑔2,𝑗 )), (16)

where 𝑔1,𝑖 and 𝑔2,𝑗 are the species of the corresponding genus. This equation assumes independence

between species-level interactions, which may not hold true in practice due to the strong phylogenetic

signal frequently encountered in species interactions (Gomez et al. 2010). In contrast, a different approach

is necessary when transitioning from a broader to a finer level of organization. This is because the

knowledge of an interaction between two genera does not guarantee that all possible pairwise species

combinations will also interact. One possible method is to build a finer-scale network by generating

probabilities of interaction through random sampling from a beta distribution, parameterized by the

broader-scale network.

Fundamentally, the taxonomic scaling of interactions involves aggregating interactions between

individuals into larger groups. Interaction probabilities at broader taxonomic scales should thus conform to

probabilities of interactions between individuals. For example, Canard et al. (2012) built a species-based

network using simulated individual-based networks. In local individual-based food webs, the probability

that two individuals interact reflects our degree of belief that one individual will consume the other.

Likewise, in local species-based food webs, the probability that two species interact represents our degree

of belief that at least one individual from the predator species will consume at least another individual

from the prey species. In that regard, taxonomic scaling is analogous to the spatial and temporal scaling
498

29 of 45



of interactions, as they all represent different ways to aggregate individuals into broader groups (either

spatially, temporally, or taxonomically).
499

Box 5: Sampling for binary interaction networks

Local networks of binary interactions may be predicted by performing independent Bernoulli trials for

each probabilistic interaction. This is particularly useful when analyzing the structure of probabilistic

interaction networks in the absence of specific analytical formulas (Poisot et al. 2016), even though

it may introduce biases in our estimations when connectance is low (Chagnon 2015; Poisot & Gravel

2014). There are at least two techniques to sampling binary interaction networks across space, each

predicting a binary interaction network for each location 𝑘 within a given region. The first technique

involves performing a single Bernoulli trial for each pair of taxa based on their regional probability of

interaction:

𝑀𝑖,𝑗 ∼ Bernoulli(𝜙𝑖,𝑗),

where 𝜙𝑖,𝑗 = 𝑃(𝑀𝑖,𝑗 = 1).

In employing this technique, we predict a single metaweb of binary interactions for each simulation. Every

pair of taxa predicted to interact in this metaweb will be treated as interacting in all localized networks

where they co-occur, i.e. 𝐿𝑖,𝑗,𝑘 = 𝑀𝑖,𝑗 when 𝑋𝑖,𝑗,𝑘 = 1. This will result in local pairwise interactions

without spatial variation.

The second technique is to independently sample each local network of probabilistic interactions:

𝐿𝑖,𝑗,𝑘 ∼ Bernoulli(𝜙𝑖,𝑗,𝑘),

where 𝜙𝑖,𝑗,𝑘 = 𝑃(𝐿𝑖,𝑗,𝑘 = 1).

This can be achieved by first generating distinct probabilistic interaction networks for each location.

Because binary interactions are sampled independently for each location, this second technique captures

network structure across space and time more effectively. When sampling binary interactions from local

interaction probabilities, it is crucial to sample at the same spatial scale for which probabilities were

estimated to prevent systematic biases in predictions.

In Fig. 4, we compare the average connectance of binary interaction networks resulting from these two
500
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sampling techniques. We sampled regional and local interactions from our host-parasite networks of

probabilistic interactions (Kopelke et al. 2017), generating a number of binary interaction network

realizations for each site in the dataset. These two sampling techniques yield different outcomes,

particularly for intermediate values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) of 0.50, which represent instances where regional

interactions do not consistently manifest locally (i.e., with the largest local variability). As anticipated,

we observe that sampling binary interactions from the metaweb tends to overestimate connectance on

average compared to sampling them from local networks (Fig. 4). We also observe an increase in the

variability of connectance when employing a single simulation (Fig. 4a-c, cross markers), which is a more

tangible representation of the process leading to the realization of local interactions in nature. All data

manipulation and methods are described in Appendix 1.
501
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Figure 4: Connectance of sampled binary interaction networks. (a-c) Average connectance of
binary interaction networks obtained from the two sampling techniques for 20 randomly selected host-
parasite networks. Cross markers represent the connectance of a single sample for each network,
diamond markers the average connectance across 10 samples, hexagon markers the average connectance
across 50 samples, and the colored circles the average connectance across 100 samples (marker size
proportional to the number of samples). (d-f) Reduction in the mean squared logarithmic error between
the average connectance of binary interaction networks (all 233 host-parasite networks) obtained from
these two sampling techniques as the number of samples increases. The local probability of interaction
between potentially interacting species was set to three different values: (a,d) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1.0,
(b,e) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 0.75, and (c,f) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 0.50. Probabilities of regional interactions were
obtained with a false positive rate of 5% and a false negative rate of 10%. Regional samples were
obtained by randomly sampling binary interactions from the probabilistic interaction metaweb, and then
propagating this result to all local networks that include the species potentially engaged in the interactions.
Local samples were obtained by independently sampling binary interactions for each local network of
probabilistic interactions.

Both sampling techniques assume independence between interactions, which might not hold true in reality.

Covariation among interactions could exist even if we do not explicitly condition interactions on others.

For example, the probability that two taxa interact could change with the realization of another interaction

or the presence or abundance of other taxa (Kéfi et al. 2012; Pilosof et al. 2017). The consequences of this

assumption of independence on the prediction of network structure have yet to be empirically examined.

Sampling whole networks (or graphs) instead of pairwise interactions may eliminate the need for this

assumption of independence (Battiston et al. 2020).
502
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Future perspectives503

In this contribution, we underline the importance of network documentation for adequately interpreting and504

manipulating probabilistic interaction data. The mathematical representation of probabilities and their statistical505

properties depend on the type of interactions (local or regional) and the conditions under which these506

interactions were evaluated. We show that local networks and metawebs of probabilistic interactions differ in507

their relationship to spatial and temporal scales (Box 3), with regional interactions remaining consistent across508

scales. In contrast with metawebs, local interactions are measured in a specific context (e.g., in a given area,509

time, and biological and environmental conditions) and depend on taxa co-occurrence. These differences bring510

to light the need to use probabilistic data with caution, for instance when generating network realizations of511

binary interactions across space (Box 5). Clear documentation describing the type of interaction and the512

variables used in their estimation are required to ensure adequate data manipulation. Sound data practices and513

foundations for probabilistic thinking in network ecology facilitate reliable assessments of the spatiotemporal514

variability and uncertainty of biotic interactions. Here we identify key research priorities for improving our515

understanding of probabilistic local and regional interactions.516

Predicting local networks from metawebs517

Metawebs are a valuable source of ecological information for predicting local networks across time and space.518

Local networks of binary interactions can be reconstructed by selecting a subset of taxa and interactions from519

the metaweb (Dunne 2006). Determining the list of taxa to select can be achieved empirically (e.g., observed520

occurrence data for a site) or numerically (e.g., species distribution models). As species composition is521

arguably easier to sample and predict than pairwise interactions, the primary challenge lies in deciding which522

interactions to select from the metaweb. Inferring the structure of local networks from the metaweb before523

predicting local pairwise interactions could hold promise (Strydom et al. 2021), considering that the structure524

of local networks is constrained by the metaweb (Saravia et al. 2022).525

While predicting local binary interactions from a metaweb is not be a simple task, inferring local networks of526

probabilistic interactions from a metaweb comes with its own set of challenges. For example, Dansereau et al.527

(2024) inferred spatially-explicit food webs from a metaweb of probabilistic trophic interactions between528

Canadian mammals. Their predicted localized food webs are downscaled versions of the metaweb (i.e.,529

localized metawebs with the same interaction probabilities as those in the regional metaweb). To infer local530
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networks as defined in this manuscript (i.e., describing local realizations of interactions), local interaction531

probabilities must be smaller than regional interaction probabilities. Inferring local networks from a metaweb532

by maintaining identical interaction probability values introduces systematic biases into the predictions, as533

discussed in Box 2 (unless networks are seen as downscaled metawebs).534

As suggested by McLeod et al. (2021), metawebs establish an upper limit for local interactions (similarly for535

metawebs of probabilistic interactions, Strydom et al. 2023). In other words, the probability that two taxa536

interact at a specific location and time is consistently lower or equal to the probability of their regional537

interaction, regardless of the conditional variables considered:538

𝑃(𝐿𝑖,𝑗,𝑘 |...) ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (17)

Moreover, the probability that two taxa possess the biological capacity to interact must be higher than the539

probability of them interacting at any location and time because they may never co-occur or encounter locally.540

Specifically, the marginal probability of local interaction across all spatial, temporal, and environmental541

conditions must be less than the probability of regional interaction, i.e.542

∫𝐸𝑘
∫𝐴0

∫𝑡0
𝑃(𝐿𝑖,𝑗,𝑘 |𝐸𝑘, 𝐴0, 𝑡0)𝑔(𝐸𝑘, 𝐴0, 𝑡0) d𝑡0 d𝐴0 d𝐸𝑘 ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗), (18)

where 𝑔(𝐸𝑘, 𝐴0, 𝑡0) is the joint density function of 𝐸𝑘, 𝐴0, and 𝑡0.543

Estimating more precisely the probability 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) that two taxa interact locally if they can potentially544

interact allows for improved predictions of local networks from the metaweb of probabilistic interactions. This545

task is challenging due to the variability of this probability across space and time, as well as its variability546

across pairwise interactions within a network. Using simple models of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗), as shown in Appendix 1,547

represents an initial step toward the overarching objective of reconstructing local networks from metawebs.548

Quantifying and reducing interaction uncertainty549

While sampling biological communities decreases the uncertainty of interactions by accumulating evidence for550

their feasibility and local realization, there is a limit to how much we can reduce uncertainty. In metawebs,551

probabilities reflect our limited knowledge of interactions, which is expected to improve with a larger volume of552
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data. Regional interactions should become more definitive (with probabilities approaching 0 or 1) as we553

investigate various conditions, including different combinations of species traits.554

In comparison, local interaction probabilities represent both our knowledge uncertainty and their spatiotemporal555

variability. Owing to environmental heterogeneity, there will invariably be instances in which an interaction556

occurs and others in which it does not, across different times and locations, irrespective of the extent to which557

we can improve our knowledge of its biological feasibility and the local conditions that facilitate its occurrence.558

When local networks describe probabilities of observing interactions rather than their realization, we must also559

consider observation uncertainty (sampling error) as an additional source of uncertainty. Quantifying and560

partitioning this uncertainty will enable us to make more accurate predictions about ecological interactions at561

various spatial and temporal scales, and to identify priority sampling locations to reduce this uncertainty. This562

will prove to be of vital importance as our time to understand nature runs out, especially at locations where the563

impacts of climate change and habitat loss hit harder.564

Relaxing the independence assumption565

Estimating local interaction probabilities independently for each taxa pair and assembling them into a network566

of probabilistic interactions comes with limitations. Predicting local networks of binary interactions based on567

these interaction probabilities assumes independence among interactions, a condition seldom respected in568

practice (Golubski & Abrams 2011). The occurrence of an interaction may depend on the realization of other569

interactions or the presence or abundance of other taxa in the network (Kéfi et al. 2012; Pilosof et al. 2017).570

Relaxing this assumption of independence is the next logical step in the stochastic representation of interactions.571

A more accurate representation of the uncertainty and variability of ecological networks involves creating572

probabilistic networks (𝑃(𝐿𝑘) and 𝑃(𝑀)), rather than networks of probabilistic interactions (𝑃(𝐿𝑖,𝑗,𝑘) and573

𝑃(𝑀𝑖,𝑗)). Probabilistic networks describe the probability that a particular network of binary (or quantitative)574

interactions (its whole adjacency matrix) is realized. For example, Young et al. (2021) used a Bayesian575

approach to estimate the probability of different plant-pollinator network structures derived from imperfect576

observational data. A probability distribution of ecological networks may also be derived using the principle of577

maximum entropy given structural constrained (e.g., Cimini et al. 2019; Park & Newman 2004).578

Regardless of the method used, generating probabilistic local networks could lead to more accurate predictions579

of local networks of binary interactions by bypassing the independence assumption. Probabilistic networks580

35 of 45



could serve as an alternative to null hypothesis significance testing when comparing the structure of a local581

network to some random expectations or, as done in Pellissier et al. (2018) and Box 2, to the metaweb. These582

random expectations are typically derived by performing a series of Bernoulli trials on probabilistic583

interactions, assuming independence, to generate a distribution of networks of binary interactions to calculate584

their structure (Poisot et al. 2016). One could instead compare the likelihood of an observed network to the one585

of the most likely network structure (according to the probabilistic network distribution), thereby directly586

obtaining a measure of discrepancy of the empirical network. Generating probabilistic ecological networks587

represents a tangible challenge, one that, in the coming years, promises to unlock doors to more advanced and588

adequate analyses of ecological networks.589
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