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Representing species interactions probabilistically (how likely are they to occur?) as opposed to

deterministically (are they occurring?) conveys uncertainties in our knowledge of interactions and information

on their variability. The sources of uncertainty captured by interaction probabilities depend on the method used

to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measurement

of interaction spatiotemporal variability. However, guidelines for the estimation and documentation of

probabilistic interaction data are lacking. This is concerning because our understanding and analysis of

interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We review how

probabilistic interactions are defined at different spatial scales, from local interactions to regional networks

(metawebs), with a strong emphasis on host-parasite and trophic (predatory and herbivory) interactions. These

definitions are based on the distinction between the realization of an interaction at a specific time and space

(local) and its biological or ecological feasibility (regional). Using host-parasite interactions in Europe, we

illustrate how these two network representations differ in their statistical properties, specifically: how local

networks and metawebs differ in their spatial and temporal scaling of probabilistic interactions, but not in their

taxonomic scaling. We present two approaches to inferring binary interactions from probabilistic ones that

account for these differences and show that systematic biases arise when directly inferring local networks from

metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic species

interaction networks that specify their type of interaction (local or regional), conditional variables and

uncertainty sources.
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Introduction1

Species interactions are variable and uncertain2

As we try to navigate global biodiversity change, filling in knowledge gaps about biodiversity becomes3

instrumental to monitoring and mitigating those changes (Abrego et al. 2021; Gonzalez & Londoño 2022;4

Hortal et al. 2015). However, cataloging species, populations and, in particular, ecological interactions (e.g.,5

predation, parasitism, and pollination) is a substantial challenge (Pascual et al. 2006; Polis 1991). There are6

methodological and biological constraints that hinder our ability to document species interactions, inevitably7

leading to uncertainty in our knowledge of interactions. For example, the spatial and temporal uncoupling of8

species (e.g., nocturnal and diurnal species coexisting in the same space with different daily activity timings,9

Jordano 1987) and the large number of rare and cryptic interactions in a community, contribute to these10

knowledge gaps by making it more difficult to observe interactions (Jordano 2016).11

Several conditions must be satisfied for an interaction to be observed locally. First, both species must have12

overlapping geographic ranges, i.e. they must co-occur within the region of interest (Cazelles et al. 2016;13

Morales-Castilla et al. 2015). Second, they must have some probability of meeting (Poisot et al. 2015).14

Probabilities of interspecific encounters are typically low, especially for rare species with low abundances.15

While species’ absolute abundances may impact interaction frequencies (Vázquez et al. 2007), encounter16

probabilities are determined by their relative abundances (Canard et al. 2012; Canard et al. 2014). The17

probability that species meet also depends on their biology, such as their phenology (Olesen et al. 2010; Singer18

& McBride 2012) and discoverability (Broom & Ruxton 2005). Finally, when species do come into contact, an19

interaction occurs only if their traits, such as their phenotypes (Bolnick et al. 2011; Gravel et al. 2013; Stouffer20

et al. 2011) and behavior (Choh et al. 2012; Pulliam 1974), are locally compatible in that specific environment21

(Poisot et al. 2015). Because these conditions are not consistently met locally, there will inevitably be instances22

where interactions will be observed and others where they will not.23

Documenting the location and timing of interactions is difficult when accounting for the spatiotemporal24

variability of ecological interactions (Poisot et al. 2012, 2015). Knowing the biological capacity of two species25

to interact directly (via e.g., trophic interactions) is necessary but not sufficient for inferring their interaction at a26

specific time and space. Environmental factors, such as temperature (Angilletta et al. 2004), drought27

(Woodward et al. 2012), climate change (Araujo et al. 2011; Gilman et al. 2010; Woodward et al. 2010), and28

habitat modifications (Tylianakis et al. 2007), contribute to this spatiotemporal variability by impacting species29



abundance and traits. Interactions may also be influenced by a third species (e.g., a more profitable prey species,30

Golubski & Abrams 2011; Sanders & van Veen 2012). Even under favorable circumstances, there remains a31

possibility that the interaction does not occur locally, either due to the intricate nature of the system or simply32

by chance. If it does occur, it might go undetected, particularly if it happens infrequently. In this context, it is33

unsurprising that our knowledge of ecological interactions remains limited (Hortal et al. 2015) despite34

extensive biodiversity data collection (Schmeller et al. 2015).35

We distinguish the variability of interactions from their uncertainty. Interaction variability is defined as the36

variation of interactions along spatial, temporal, or environmental axes (Poisot et al. 2015). It is a property of37

interactions that should be quantified if we aim for a comprehensive understanding of ecological networks.38

Stochasticity is the inherent randomness or unpredictability of interactions that lead to this variability.39

Conversely, uncertainty is defined as a lack of knowledge about the occurrence of interactions. When using40

statistical models to infer interactions, uncertainty sources include input data, parameter, and model structure41

uncertainties (Simmonds et al. 2024). Input data uncertainty arises from our inability to empirically observe all42

interactions and from measurement errors in environmental and biological variables used for inference.43

Parameter uncertainty represents a plausible range of values for a parameter whose exact value is unknown. For44

example, we may calculate a range of plausible values for interaction variability (e.g., there could be a 50%45

certainty that an interaction occurs 50% of the time). Model structure uncertainty recognizes that different46

statistical models may adequately predict interactions. In contrast to variability, uncertainty can be reduced by47

sampling additional data. Simmonds et al. (2024) underscores the importance of quantifying and reporting48

these diverse sources of uncertainty, alongside ensuring their appropriate propagation to model output (such as49

predicted interactions) and higher-level measures (such as network structure). While recognizing that these50

definitions may not be universally accepted, clarifying the distinction between variability and uncertainty51

enables us to better comprehend the sources of our knowledge gaps about ecological interactions.52

Species interactions as probabilistic objects53

The recognition of the intrinsic variability and uncertainty of species interactions has led ecologists to expand54

their representation of ecological networks to include a probabilistic view of interactions (Dallas et al. 2017; Fu55

et al. 2021; Poisot et al. 2016). This allows filling in the Eltonian shortfall (i.e., the gap between our current56

knowledge and a comprehensive understanding of interactions, Hortal et al. 2015) by modeling the probability57

of occurrence of interactions (e.g., Gravel et al. 2019), which can be an important tool for directing efforts and58
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taking action (Carlson et al. 2021), especially in places where access and resources for research are scarce. A59

probability is a measure of how likely a specific outcome is, based on both the uncertainty and variability of60

interactions. Interaction probabilities may be uncertain when there is a distribution of plausible probability61

values. The probabilistic representation of interactions has been applied to direct interactions, which are62

conceptually and mathematically analogous regardless of their biological type (e.g., predation and pollination).63

This is in contrast with indirect interactions (e.g., interspecific competition), which arise from distinct64

ecological processes and are often not directly observable (Kéfi et al. 2015, 2016). By accounting for the65

uncertainty and variability of direct interactions, networks of probabilistic interactions (which differ from66

probabilistic networks describing the uncertainty and variability of the whole network) may provide a more67

realistic portrait of species interactions.68

Probabilistic interactions differ from binary interactions. Networks of probabilistic interactions, within a69

Bayesian perspective, express our degree of belief (or confidence) regarding the occurrence or observation of70

interactions. In contrast, interactions are simply regarded as either occurring or not in networks of deterministic71

binary interactions. Based on the scale at which they are estimated, interaction probabilities may reflect our72

level of confidence in whether interactions will be observed, realized locally, or biologically feasible. Our level73

of confidence should be more definitive (approaching either 0 or 1) as we extend our sampling to a broader area74

and over a longer duration, thereby diminishing the uncertainty of our knowledge of interactions (but not75

necessarily the estimation of their variability). In the broadest sense, binary interactions are also a type of76

probabilistic interaction, in which the numerical value of an interaction is restrained to 0 (non-occurring) or 177

(occurring). In networks of probabilistic interactions, only forbidden interactions (i.e., interactions prohibited78

by biological traits or species absence, Jordano et al. 2003; Olesen et al. 2010) have a probability value of zero,79

provided that intraspecific trait variability is considered (Gonzalez-Varo & Traveset 2016). Understanding the80

nuances between probabilistic and binary interactions is essential for accurately modeling and interpreting81

ecological networks.82

The application and development of computational methods in network ecology, often based on a probabilistic83

representation of interactions, can alleviate (and guide) the sampling efforts required to document species84

interactions (Strydom et al. 2021). For example, statistical models can be used to estimate the uncertainty of85

pairwise interactions (Cirtwill et al. 2019) and the probability of missing (false negatives) and spurious (false86

positives) interactions (Guimerà & Sales-Pardo 2009), helping us identify places where sampling is most87

needed to reduce this uncertainty. Statistical models can also predict networks without prior knowledge of88
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pairwise interactions. They may do so using body size (Caron et al. 2024; Gravel et al. 2013; Petchey et al.89

2008), phylogeny (Elmasri et al. 2020; Strydom et al. 2022), or a combination of niche and neutral processes90

(Bartomeus et al. 2016; Pomeranz et al. 2019) for inference. Before being used to test ecological hypotheses,91

predicted networks must be validated against empirical data (Brimacombe et al. 2024), which could be sampled92

strategically to optimize the validation process. Topological null models, which generate networks of93

probabilistic interactions by preserving chosen characteristics of the adjacency matrix of binary interactions94

while intentionally omitting others (Bascompte et al. 2003; Fortuna & Bascompte 2006), are examples of95

common probabilistic interaction models. Null models can produce underlying distributions of network96

measures for null hypothesis significance testing. However, how the uncertainty of pairwise interactions97

propagates to network structure (i.e., community-level properties driving the functioning, dynamics, and98

resilience of ecosystems, McCann 2007; McCann 2011; Proulx et al. 2005; Rooney & McCann 2012) remains99

to be elucidated. Many measures have been developed to describe the structure (Poisot et al. 2016) and100

diversity (Godsoe et al. 2022; Ohlmann et al. 2019) of probabilistic interaction networks. These models and101

measures support the use of probabilistic interactions for the study of a wide range of ecological questions, from102

making better predictions of species distribution (Cazelles et al. 2016) to forecasting the impact of climate103

change on ecological networks (Gilman et al. 2010).104

We lack a clear understanding of probabilistic species interactions105

We still lack a precise definition of probabilistic interactions, which makes the estimation and use of these data106

more difficult. In this manuscript, we aim to take a step back by outlining different ways in which probabilistic107

interactions are defined and used in network ecology. We distinguish two broad categories of probabilistic108

interaction networks that necessitate distinct approaches: local networks describing probabilities of realized109

interactions, and regional networks (metawebs) describing probabilities of potential interactions. We highlight110

the distinctions in the ecological meaning of these two representations of interactions and examine their111

properties and relationships (particularly with space, time, and between each other).112

The lack of clear guidelines on the use of probabilistic interaction data is worrisome, as it affects both data113

producers and re-users who generate and manipulate these numbers. This is concerning because sampling114

strategies and decisions regarding network construction can affect our understanding of network properties115

(Brimacombe et al. 2023). There is currently no reporting standard that could guide the documentation of all116

types of probabilistic interactions (Salim et al. 2022 discuss data standards for deterministic mutualistic117
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networks). Clear reporting standards for probabilistic interactions would support more adequate manipulation118

and integration of interaction data from different sources and guard against possible misinterpretations arising119

from ambiguous definitions of probabilistic interaction networks. Data documentation should outline the nature120

(i.e., local or regional) and type (e.g., predatory or pollination) of interactions, provide information regarding121

the taxonomic level, identities, and characteristics (e.g., life stages) of the individuals involved in an interaction,122

present the mathematical formulation of probabilities, including clearly identified conditional variables (e.g.,123

spatial and temporal scales), and describe the methods and contexts (e.g., location, time, environmental124

conditions) in which interactions were estimated. Inadequately documented probabilistic interaction data should125

be used with caution when analyzing ecological networks. These broad principles remain relevant and126

applicable across different types of direct interactions. In the following sections, we discuss the definitions,127

conditions, and estimation of probabilistic interactions as we scale up from pairwise interactions to interactions128

within local and regional networks.129

Pairwise interactions: the building blocks of ecological networks130

What are probabilistic interactions?131

Consider a scenario where an avian predator has just established itself in a northern habitat home to a small132

rodent. Suppose these species have never co-occurred before, and as a result, their interaction has not been133

previously observed. What is the probability that the rodent is part of the diet of the avian predator, or put134

differently, what is the probability that they interact? Answering this question requires some clarification, as135

there are multiple ways to interpret and calculate interaction probabilities. We could calculate the probability136

that the traits of these species match, i.e. that the avian predator possesses the biological attributes to capture137

and consume the rodent. We could also calculate the probability that their traits support an interaction under the138

typical environmental conditions of the new habitat. For example, because avian predators hunt by sight,139

predation could be possible in the absence of snow but highly improbable when snow is present, as rodents may140

use it as a shelter to hide from predators. Finally, we could calculate the probability that the avian predator will141

consume the rodent at that particular location, for which the spatial and temporal boundaries need to be142

specified. The estimation of the probability of interaction between these two species, whether through143

predictive models or informative prior probabilities, hinges on our understanding of these probabilities and the144

specific ecological processes we aim to capture.145
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An important aspect to consider when estimating or using interaction probabilities is knowing if they describe146

the probability of potential or realized interactions, as these two types of interactions have distinct meanings and147

sources of uncertainty and variability. A potential (regional) interaction is defined as the biological or148

ecological capacity of two taxa to interact (i.e., the probability that they interact if they were to encounter each149

other, given sufficient time and appropriate environmental conditions) whereas a realized (local) interaction is150

the occurrence or observation of this interaction in a well-defined space and time (i.e., the probability that they151

interact locally). For two co-occurring taxa and over enough time, the probability of local interaction tends152

toward the probability of regional (potential) interaction. A longer duration increases the probability that153

species will eventually encounter each other and that local environmental conditions supporting an interaction154

will occur, provided that species have the biological capacity to interact. Recognizing the distinction between155

probabilistic regional and local interactions is crucial for accurately interpreting interaction probabilities in156

ecological networks.157

We use the terms metaweb (Dunne 2006) to designate regional networks of potential interactions and local158

networks (Poisot et al. 2012) for those of realized interactions. Metawebs are the network analogs of the species159

pool, where local networks originate from a subset of both species (nodes) and interactions (edges) of the160

regional metaweb (Saravia et al. 2022). Without clear documentation, it can be challenging to know if published161

probabilistic interaction networks describe local or regional interactions. When probabilistic local interactions162

are used and interpreted incorrectly as regional interactions (and conversely), this may generate misleading163

findings during data analysis. A better understanding of probabilistic local and regional interaction networks164

would facilitate a more adequate use of interaction data (e.g., when studying network-area relationships in local165

networks and metawebs) and prevent misinterpretations of the biological meaning of probabilistic interactions.166

What is the outcome of probabilistic interactions?167

The outcome of probabilistic interactions is usually binary168

Local networks and metawebs, like any type of network, are made of nodes and edges that may be represented169

at different levels of organization. The basic units of ecological networks are individuals that interact with each170

other (e.g., by predation in food webs, Elton 2001), forming individual-based networks (Melián et al. 2011).171

The aggregation of these individuals into more or less homogeneous groups (e.g., populations, species, families,172

feeding guilds) allows us to represent nodes at broader taxonomic scales, which affects our interpretation of the173
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properties of these systems (Guimarães 2020; Hemprich-Bennett et al. 2021).174

Ecologists have traditionally represented interactions (edges) as binary objects that were considered realized175

after observing at least one individual from group 𝑖 interact with at least another individual from group 𝑗. In an176

adjacency matrix 𝐵 of binary interactions, the presence or absence of an interaction 𝐵𝑖,𝑗 between two taxa can177

be viewed as the result of a Bernoulli trial 𝐵𝑖,𝑗 ∼ Bernoulli(𝑃(𝐵𝑖,𝑗)), with 𝑃(𝐵𝑖,𝑗) being the probability of178

interaction. This interaction probability characterizes our limited ecological knowledge and/or the intrinsic179

spatiotemporal variability of the interaction. It may be estimated through predictive models (e.g., those based180

on biological traits and species abundances) or expert (prior) knowledge about the interaction. In networks of181

probabilistic interactions, the edge values 𝑃(𝐵𝑖,𝑗) are probabilistic events whose only two possible outcomes are182

the presence (𝐵𝑖,𝑗 = 1) or absence (𝐵𝑖,𝑗 = 0) of an interaction between each pair of nodes. Depending on the183

type of probabilistic interaction network (local network or metaweb), the mathematical formulation and184

interpretation of stochastic parameters like 𝑃(𝐵𝑖,𝑗) can be linked to environmental and biological factors such as185

species abundances, species traits, area, and time, for example using logistic regression with continuous186

explanatory variables. This allows us to model the probability that at least two individuals interact under these187

conditions.188

The variability of an interaction determines the fraction of networks in which it occurs. This fraction can be189

predicted by using a Binomial distribution, assuming a constant interaction probability and independence190

between interactions in different networks (trials). When considering uncertainties around the estimation of191

𝑃(𝐵𝑖,𝑗), a Beta distribution may be used to represent the relative likelihood of different probability values. For192

example, when calculating the probability of interaction between two taxa based on their local abundances, any193

uncertainty in their abundances would introduce uncertainty in the interaction probability at the local scale. If194

we take into account the uncertainty of the interaction probability, a Beta-Binomial distribution can be used to195

predict the number of networks in which the interaction occurs. Empirically observing an interaction between196

two taxa at a given location and time provides important information that can be used to update previous197

estimates of 𝑃(𝐵𝑖,𝑗), informing us of the conditions that enabled them to interact locally. By sampling binary198

interactions in different contexts, we can thus estimate their local variability more precisely.199

The outcome of probabilistic interactions may also be quantitative200

Even though binary interaction networks constitute a highly valuable source of ecological information (Pascual201

et al. 2006), they overlook interaction strengths. Represented in a quantitative adjacency matrix 𝑊 , interaction202
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strengths better describe the energy flows, demographic impacts or frequencies of interactions between nodes203

(Berlow et al. 2004; Borrett & Scharler 2019), with 𝑊𝑖,𝑗 being a natural ℕ or real ℝ number depending on the204

measure. For example, they may represent local interaction rates between pairs of taxa (e.g., the flower-visiting205

rates of pollinators in a mutualistic network, Herrera 1989). When interaction strengths characterize predation206

pressure on prey, they can serve as parameters in a Lotka-Volterra model (e.g., Emmerson & Raffaelli 2004).207

The extra amount of ecological information in quantitative networks typically comes at a cost of greater208

sampling effort and data volume (Strydom et al. 2021), especially when using predictive models that quantify209

the uncertainty and variability of quantitative interactions (Berlow et al. 2004).210

Like binary interaction networks, the uncertainty and variability of interaction strengths can be represented211

probabilistically. Interaction strengths can follow many probability distributions depending on the measure. For212

instance, they can follow a Poisson distribution 𝑊𝑖,𝑗 ∼ Poisson(𝜆𝑖,𝑗𝑡0) when predicting the number of213

interactions between individuals during a time interval 𝑡0, with 𝜆𝑖,𝑗 being the expected rate at which individuals214

of taxa 𝑖 and 𝑗 interact (e.g., the expected number of prey 𝑗 consumed by all predators 𝑖). The Poisson215

distribution can also be 0-inflated when taking into account non-interacting taxa (e.g., Boulangeat et al. 2012216

employ a 0-inflated model to analyze species abundance following the modeling of species presence and217

absence), which constitute the majority of taxa pairs in most local networks (Jordano 2016). Regardless of the218

measure, representing interaction strengths probabilistically enables the propagation of uncertainty from219

pairwise interactions to the broader dynamics of ecological networks.220

Because of the methodological difficulties typically encountered when building deterministic quantitative221

networks, binary interaction networks, which are easier to sample (Jordano 2016) and predict (Strydom et al.222

2021), have been more frequently studied and used. Mathematical models such as Ecopath (Plagányi &223

Butterworth 2004) partially mitigate these difficulties, but the number of biological parameters required to make224

predictions hinders their application in many systems. Moreover, most published probabilistic interaction225

networks (e.g., Strydom et al. 2022) and methods (e.g., Poisot et al. 2016) involve probabilistic interactions226

whose outcome is binary. This underlines the need for better guidelines on the interpretation and manipulation227

of probabilistic interactions with binary outcomes first, to ensure the appropriate use of these networks and228

methods. For these reasons, the primary focus of the remainder of this manuscript is on the interpretation of229

interaction probabilities that determine the presence or absence of interactions, in both local networks and230

metawebs.231
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Local networks: communities interacting in space and time232

What are local probabilistic interactions?233

Local networks of probabilistic interactions describe how likely taxa are to interact in a local context. Local234

interactions are contingent upon the environmental conditions experienced by the community and the matching235

of taxa’s local biological traits. In local networks, edges commonly represent our degree of belief that two taxa236

interact in nature, but can also represent the probability of empirically observing this interaction (Catchen et al.237

2023). Local interactions may thus arise from both the ecological (realized interactions) and sampling238

(observed interactions) processes taking place locally.239

Local networks are delineated within a particular location and time. We define space as the collection of240

geographic coordinates (𝑥, 𝑦, 𝑧), with (𝑥, 𝑦) representing longitude and latitude coordinates, and 𝑧 denoting241

either altitudes or depths. These point coordinates delineate the spatial boundaries of the system, which may be242

portrayed as a polyhedron. Ecological interactions may vary along latitudinal and altitudinal gradients, as243

evidenced by changes in hummingbird-plant interactions (Weinstein & Graham 2017a, b) and mosquito biting244

rates (e.g., Kulkarni et al. 2006) at different elevations. On the other hand, time is defined as the specific time245

period within which interactions were either observed or predicted. Even though space and time are continuous246

variables that should yield probability densities of interactions (i.e., relative likelihoods of interactions247

occurring at infinitesimal locations and instants in time), these definitions enable them to be conceptualized as248

distinct patches and time segments. Treating space and time as discrete dimensions aligns with the common249

sampling methods of ecological networks and provides probabilities of interactions, which can be obtained by250

integrating probability densities over space and time. We can quantify both an area 𝐴0 and a duration 𝑡0 with251

these definitions. By studying probabilistic local interaction networks, we may thus conduct spatiotemporal252

analyses of local interactions (Box 1), enhancing our understanding of interactions occurring in distinct253

environmental contexts.254

What are local probabilistic interactions conditioned on?255

Local interactions may be conditioned on co-occurrence256

The probability that two taxa 𝑖 and 𝑗 interact in a local network 𝐿𝑥,𝑦,𝑧,𝑡 (spatial and temporal subscripts hereafter257

replaced by the shorter subscript 𝑘 for clarity) can be conditioned on many environmental and biological factors.258
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In addition to network area (or volume) 𝐴0 and duration 𝑡0, they may be conditioned on taxa co-occurrence259

𝑋𝑖,𝑗,𝑘, which is usually Boolean, describing if the geographic distributions of both taxa overlap within the study260

area. As illustrated in Box 1, co-occurrence may be modeled probabilistically, in which case it may conform to261

a Bernoulli distribution 𝑋𝑖,𝑗,𝑘 ∼ Bernoulli(𝑃(𝑋𝑖,𝑗,𝑘)). The probability of co-occurrence can be calculated using262

the individual (marginal) occurrence probabilities 𝑃(𝑋𝑖,𝑘) and 𝑃(𝑋𝑗,𝑘). Given that taxa occurrences are not263

independent of each other, the probability of co-occurrence can be calculated by multiplying the probability of264

occurrence of one taxon by the probability of occurrence of the other given that the first one is present:265

𝑃(𝑋𝑖,𝑗,𝑘) = 𝑃(𝑋𝑖,𝑘, 𝑋𝑗,𝑘) = 𝑃(𝑋𝑖,𝑘 |𝑋𝑗,𝑘)𝑃(𝑋𝑗,𝑘) (1)

The probability of co-occurrence 𝑃(𝑋𝑖,𝑗,𝑘) can be estimated through the application of joint species distribution266

models (e.g., Pollock et al. 2014), potentially taking into account biotic interactions (Staniczenko et al. 2017).267

Given that the probability that two non-co-occurring taxa interact locally is zero (i.e., 𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑗,𝑘 = 0) = 0),268

the probability of local interaction can be obtained by multiplying the probability of interaction given269

co-occurrence with the probability of co-occurrence:270

𝑃(𝐿𝑖,𝑗,𝑘) = 𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑗,𝑘) × 𝑃(𝑋𝑖,𝑗,𝑘). (2)

Knowing that two taxa co-occur improves our estimation of the probability that they interact locally by271

mitigating a potential source of uncertainty.272

Local interactions may be conditioned on different environmental and biological factors273

Local interactions may also be conditioned on local environmental factors such as temperature (Angilletta et al.274

2004), precipitation (Woodward et al. 2012), habitat structure (Klecka & Boukal 2014), and presence of other275

taxa in the network (Kéfi et al. 2012; Pilosof et al. 2017). We use the variable 𝐸𝑘 to describe the local276

environmental context in which interaction probabilities were estimated. For example, in a mesocosm277

experiment estimating interaction probabilities between predators and prey with and without shelters, 𝐸𝑘 would278

represent the presence or absence of these shelters. Like co-occurrence, 𝐸𝑘 can also be modeled279

probabilistically when the variability or uncertainty of environmental factors is considered. 𝐸𝑘 represents all280

environmental variables that were taken into consideration when measuring interaction probabilities; it is281
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therefore a subset of all environmental factors acting on ecological interactions.282

Other important factors that can impact interaction probabilities at the local scale are taxa local abundances 𝑁𝑖,𝑘283

and 𝑁𝑗,𝑘, which affect encounter probabilities (Canard et al. 2012), and local traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘 (e.g., body284

mass, longevity, and habitat breadth, Caron et al. 2024), which determine the ability of individuals to interact285

after encountering each other (Poisot et al. 2015). Local interaction probabilities may also be conditioned on286

higher-level properties of the community, which we denote by 𝑓 (𝐿𝑘). Many topological null models (i.e.,287

statistical models that randomize interactions by retaining certain properties of the network while excluding288

others) provide interaction probabilities from selected measures of network structure, such as connectance289

(Fortuna & Bascompte 2006) and the degree distribution (Bascompte et al. 2003). Biological factors, whether290

at the scale of individual taxa pairs or the community, may thus impact how we estimate and define interaction291

probabilities.292

Local interactions may be conditioned on biological feasibility293

Local interactions must be biologically feasible before occurring at a specific time and space. A local294

probability of interaction 𝑃(𝐿𝑖,𝑗,𝑘) can be expressed as the product of the probability of local interaction given295

that the two taxa can potentially interact 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗 = 1), which we sometimes denote as 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) for the296

sake of simplicity, with their probability of regional interaction 𝑃(𝑀𝑖,𝑗):297

𝑃(𝐿𝑖,𝑗,𝑘) = 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗 = 1) × 𝑃(𝑀𝑖,𝑗 = 1). (3)

Low values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) indicate that feasible interactions rarely occur locally, intermediate values around298

50% suggest considerable spatiotemporal variability, while high values indicate that regional interactions are299

nearly always realized locally. The local probability of interaction between a given pair of taxa is thus always300

equal to or below their probability of regional interaction. Taking into account biological feasibility in our301

estimation of local interaction probabilities leverages information from the metaweb to better predict the local302

occurrence of interactions (Dansereau et al. 2023; Strydom et al. 2021).303
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Conditional variables must be explicitly stated304

The probability that two taxa 𝑖 and 𝑗 interact in a local network 𝐿𝑘 can thus be conditioned on their305

co-occurrence 𝑋𝑖,𝑗,𝑘 (or more explicitly on their occurrences 𝑋𝑖,𝑘 and 𝑋𝑗,𝑘), local abundances 𝑁𝑖,𝑘 and 𝑁𝑗,𝑘, local306

traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘, local environmental conditions 𝐸𝑘, network area (or volume) 𝐴0, time interval 𝑡0, network307

properties 𝑓 (𝐿𝑘), and biological feasibility 𝑀𝑖,𝑗 . The local probability of interaction is described by the308

following expression when all of these conditional variables are included:309

𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑘, 𝑋𝑗,𝑘, 𝑁𝑖,𝑘, 𝑁𝑗,𝑘, 𝑇𝑖,𝑘, 𝑇𝑗,𝑘, 𝐸𝑘, 𝐴0, 𝑡0, 𝑓 (𝐿𝑘), 𝑀𝑖,𝑗). (4)

These conditional variables do not all need to be considered at all times. The representation of the local context310

in which probabilities are estimated and the variables that should be taken into consideration depend on the311

study system, the objectives of the study, and the resources available to the researchers. For example, Gravel et312

al. (2019) analyzed local European host-parasite networks of willow-galling sawflies and their natural enemies,313

all referenced in space and time, to infer probabilities of local interactions between co-occurring species. This314

was achieved by including temperature and precipitation as conditional variables in their models. In Box 2, we315

reuse these data to show the extent of variation among these local networks. We do so by measuring their316

dissimilarity with the regional network (metaweb aggregating all local interactions), both in terms of species317

composition and interactions. We built local probabilistic networks following eq. 3, showing that insufficient318

local variation (high probability of local interaction among potentially interacting species) results in an319

overestimation in both the number of interactions and connectance (i.e., the proportion of all of the320

non-forbidden links that are realized). This analysis was conducted for illustrative purposes, and other321

conditional variables could have been used to make these comparisons.322

When accounted for, conditional variables should be clearly described in the documentation of the data323

(Brimacombe et al. 2023), preferentially in mathematical terms to avoid any confusion in their interpretation324

and to limit manipulation errors during their re-use. For instance, ecologists should be explicit about their325

consideration (𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑗,𝑘)) or not (𝑃(𝐿𝑖,𝑗,𝑘)) of co-occurrence in their estimation of local interaction326

probabilities, as this can change our interpretation of the data and understanding of potential uncertainty327

sources. Reporting the scale and level of aggregation of the data enables us to more accurately study the328

underlying ecological processes (Clark et al. 2011) and manipulate or propagate uncertainty to different329

aggregation levels (Simmonds et al. 2024). In Tbl. 1, we present examples of studies that used different330
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expressions of probabilistic interactions with different conditional variables. We included in this table the331

probability of empirically observing an interaction that is realized locally 𝑃(𝑂𝑖,𝑗,𝑘 |𝐿𝑖,𝑗,𝑘) to underscore the332

distinction between local observations and actual realizations of interactions.333

Table 1: Mathematical expressions of probabilistic interactions. The probability of interaction between two
taxa 𝑖 and 𝑗 is interpreted differently in a local network 𝐿𝑘 of realized interactions, a local network 𝑂𝑘 of observed
interactions, a metaweb 𝑀 of potential interactions (representing the biological feasibility of interactions), and
a metaweb 𝑀∗ of potential interactions (representing the ecological feasibility of interactions). Each expression
emphasizes a different conditional variable, the ellipsis serving as a placeholder for other variables not explicitly
stated in the expression. The outcome of each of these probabilistic events, along with common models used
for estimation, is presented alongside examples of studies that employed them (with specific variables indicated
in parentheses, when applicable). The study marked with an asterisk has been conducted on binary interaction
networks. The boxes in our study that discuss these expressions are also specified.

Expression Type Outcome Common models Reference

𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑘, 𝑋𝑗,𝑘, ...) local realization of the interaction

given taxa co-occurrence

species distribution

models

Gravel et al. (2019),

Dansereau et al.

(2023), Boxes 1 and 5

𝑃(𝐿𝑖,𝑗,𝑘 |𝑁𝑖,𝑘, 𝑁𝑗,𝑘, ...) local realization of the interaction

given taxa abundances

neutral models Canard et al. (2014)

𝑃(𝐿𝑖,𝑗,𝑘 |𝑇𝑖,𝑘, 𝑇𝑗,𝑘, ...) local realization of the interaction

given local traits

trait matching

models

Caron et al. (2024),

Box 4

𝑃(𝐿𝑖,𝑗,𝑘 |𝐸𝑘, ...) local realization of the interaction

given local environmental

conditions

environmental-

based models

Gravel et al. (2019)

(temperature and

precipitation)

𝑃(𝐿𝑖,𝑗,𝑘 |𝐴0, ...) local realization of the interaction in

a given area or volume

spatial models Galiana et al. (2018)

*, Box 3

𝑃(𝐿𝑖,𝑗,𝑘 |𝑡0, ...) local realization of the interaction

during a given time period

temporal models Weinstein & Graham

(2017a), Boxes 1 and

3

𝑃(𝐿𝑖,𝑗,𝑘 |𝑓 (𝐿𝑘), ...) local realization of the interaction

given network structure

topological models Fortuna & Bascompte

(2006) (connectance),

Stock et al. (2017)
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Expression Type Outcome Common models Reference

𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗 , ...) local realization of the interaction

given that it is biologically

feasible

spatiotemporal

models

Dansereau et al.

(2023), Boxes 2, 3,

and 5

𝑃(𝑂𝑖,𝑗,𝑘 |𝐿𝑖,𝑗,𝑘, ...) local observation of the interaction

given that it is realized locally

sampling models Catchen et al. (2023)

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) regional biological feasibility of the

interaction given regional

traits (non-forbiddenness)

trait matching

models

Strydom et al. (2022),

Box 4

𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸) regional ecological feasibility of the

interaction given regional

traits and environmental

conditions

trait matching and

environmental-

based models

this study

How are local probabilistic interactions estimated?334

Various statistical models can be used to estimate local interaction probabilities, some of which are presented in335

Tbl. 1. These models can be based on multiple conditional variables. Although these variables correspond to336

distinct ecological inquiries or mechanisms related to ecological interactions, they may covary with each other,337

such as the possible dependence of 𝑋𝑖,𝑗,𝑘 and 𝐸𝑘 on spatial and temporal scales. When estimating interaction338

probabilities using e.g. a generalized linear model with multiple explanatory variables that might not all be339

independent, it may become important to address collinearity. In such cases, it may be necessary to use variable340

selection techniques before fitting the model to data to mitigate this issue. Other challenges and opportunities341

associated with predictive models of species interactions are reviewed in Strydom et al. (2021).342

When using multiple competing models to estimate local interaction probabilities, rather than selecting a single343

model that best fits the data, model averaging may enhance our estimations. Model weights represent the344

probability that each model is the most suitable for explaining the data, and may be measured using Akaike345

weights (Burnham & Anderson 2004; Wagenmakers & Farrell 2004). For instance, given two competing346

models 𝑚𝑜𝑑1 and 𝑚𝑜𝑑2 with respective probabilities (or weights) 𝑃(𝑚𝑜𝑑1) and 𝑃(𝑚𝑜𝑑2), the average347

probability of interaction 𝑃(𝐿𝑖,𝑗,𝑘) can be calculated as follows:348
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𝑃(𝐿𝑖,𝑗,𝑘) = 𝑃(𝐿𝑖,𝑗,𝑘 |𝑚𝑜𝑑1) × 𝑃(𝑚𝑜𝑑1) + 𝑃(𝐿𝑖,𝑗,𝑘 |𝑚𝑜𝑑2) × 𝑃(𝑚𝑜𝑑2). (5)

Model averaging takes into account the uncertainty of model structure in our estimation of local interaction349

probabilities. Regardless of the model used for prediction, it is crucial to quantify and disclose all sources of350

uncertainty to understand better the validity and limitations of our predictions (Simmonds et al. 2024).351

Box 1: A spatiotemporally explicit model of interactions

Ecologists may resort to predictive models to reconstruct local networks across time and space. We

introduce and develop a simple generative Bayesian model for probabilistic local interactions, which

explicitly accounts for their spatiotemporal variability. Our model is not designed for regional interactions,

which do not vary spatially nor temporally. Rather, it could prove valuable for generating new data on

local interactions across time and space, following parameter inference.

As indicated by Eq. 2, the probability that two taxa 𝑖 and 𝑗 interact locally can be obtained by

multiplying their probability of interaction given co-occurrence with their probability of co-occurrence.

The probability of interaction given co-occurrence can be made temporally explicit by modeling it as

a Poisson process with rate parameter 𝜆𝑘. This parameter represents the local expected frequency of

interaction between co-occurring taxa. The probability that two co-occurring taxa interact during a time

interval 𝑡0 can be given by:

𝑃(𝐿𝑖,𝑗,𝑘 |𝑋𝑖,𝑗,𝑘) = 1 − 𝑒−𝜆𝑘𝑡0 , (6)

which tends toward 1 as 𝑡0 → ∞ if 𝜆𝑘 > 0. In other words, two co-occurring taxa with a nonzero rate of

interaction will inevitably interact in a sufficiently long time interval.

The occurrence of an interaction between 𝑖 and 𝑗 may be the result of a Bernoulli trial with probability

𝑃(𝐿𝑖,𝑗,𝑘). A Bayesian model can be built using the preceding equations to generate new interaction data,

following the inference of the 𝜆𝑘 and 𝑃(𝑋𝑖,𝑗,𝑘) parameters.

𝐿𝑖,𝑗,𝑘 ∼ Bernoulli(𝑃(𝐿𝑖,𝑗,𝑘)) (7)

𝑃(𝐿𝑖,𝑗,𝑘) = 𝑃(𝑋𝑖,𝑗,𝑘)(1 − 𝑒−𝜆𝑘𝑡0) (8)
352
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𝑃(𝑋𝑖,𝑗,𝑘) ∼ Beta(2, 2) (9)

𝜆𝑘 ∼ Exponential(2) (10)

In Fig. 1, we show the variation in the probability of interaction under different parameter values. In the

right panel, we notice that the probability of interaction always converges toward the probability of co-

occurrence 𝑃(𝑋𝑖,𝑗,𝑘), for all positive values of the interaction rate.

Figure 1: Parameters of the spatiotemporally explicit model of interactions. (a) Probability of local
interaction given by the process model (Eq. 8) under different values of 𝜆𝑘 (interaction rate) and 𝑃(𝑋𝑖,𝑗,𝑘)
(probability of co-occurrence), with 𝑡0 = 1 (duration). Parameters 𝑡0 and 𝜆𝑘 have complementary units
(e.g., 𝑡0 in months and 𝜆𝑘 in number of interactions per month). The parameter values used in the
right panel are denoted by the white stars. (b) Scaling of the probability of interaction with the duration
parameter 𝑡0, for different values of 𝜆𝑘 and 𝑃(𝑋𝑖,𝑗,𝑘).

This model can be customized in different ways, such as linking both parameters to specific environmental

or biological variables. For instance, the probability of co-occurrence could be modeled as a function of

climatic variables, while the interaction rate parameter could be modeled based on taxa abundances.
353

Box 2: Dissimilarity of local host-parasite networks

We present a way to assess local network variability and dissimilarity regarding species composition and

interactions. We do so by comparing local tripartite host-parasite networks to the metaweb using data
354
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from Kopelke et al. (2017). This collection of networks consists of interactions between willows, willow-

galling sawflies, and their natural enemies sampled across Europe. All data manipulation and methods are

described in Appendix 1. All code and data to reproduce these analyses are available at the Open Science

Framework (TBD).

In Fig. 2a-b, we show how the dissimilarity between the metaweb of binary interactions and aggregated

local networks changes with the number of sampled local networks. We compared the metaweb and the

aggregated local networks using the dissimilarity in species composition (𝛽𝑆, Fig. 2a) and the dissimilarity

of interactions between common species (𝛽𝑂𝑆, Fig. 2b) indices (Poisot et al. 2012). Expectedly, local

networks are highly dissimilar from the metaweb in terms of species composition, especially when only a

limited number of sites have been sampled. This is because few species from the metaweb (species pool)

occur locally. Moreover, we observe a peak in the dissimilarity of interactions between common species at

intermediate sampling levels. This suggests that species are collected faster than their interactions. With

a limited number of sampled local networks, few regional interactions are observed locally. Adding more

sites brings new species, but not always their interactions. Quadratic relationships of network properties

with sampling effort were also observed by McLeod et al. (2021).
355
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Figure 2: Network accumulation curves. (a) Dissimilarity in species composition and (b) dissimilarity
of interactions between common species between aggregated local networks and the metaweb of binary
host-parasite interactions. In both panels, the colored line represents the median dissimilarity across
simulations and the grey areas cover the 50% and 95% percentile intervals. (c) Scaling of the number
of interactions and (d) scaling of connectance with the number of sampled (aggregated) binary and
probabilistic local interaction networks. For a better comparison with binary interactions, local networks
of probabilistic interactions were derived from a metaweb of probabilistic interactions with a false positive
and false negative rate of zero. A specific value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) (the local probability of interaction
among potentially interacting species) was used for all non-aggregated local networks within a particular
curve. Aggregated local networks were obtained by sequentially and randomly selecting a number of local
networks and aggregating both their species and interactions (with the value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) increasing
in aggregated local networks of probabilistic interactions).

Next, we investigate how the number of local interactions and connectance scale with the number of

sampled (aggregated) local networks of probabilistic or binary interactions (Fig. 2c-d). By comparing

the scaling relationships observed in local networks of binary and probabilistic interactions, we observe

that high values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) lead to systematic overestimations in the number of interactions and

connectance, especially when 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1 (i.e., when local and regional probabilities of interactions
356
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are equivalent). This suggests that high values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) do not adequately capture the variability of

local interactions. However, these biases tend to diminish as the number of sampled networks increases,

indicating that most interactions are eventually captured when 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) is high. In contrast, low values

of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) lead to missing interactions, resulting in an underestimation of the number of interactions

and connectance. These results underscore the importance of using the appropriate level of variability

when estimating local interaction probabilities.
357

Metawebs: regional catalogs of interactions358

What are regional probabilistic interactions?359

Metawebs (Dunne 2006) are networks of potential interactions over broad spatial, temporal, and taxonomic360

scales (e.g., food webs at the continental scale). Potential interactions describe the biological capacity of taxa to361

interact under optimal or feasible environmental conditions, which is typically assessed at the regional scale.362

Metawebs of probabilistic interactions are particularly useful in situations where there is uncertainty in the363

ability of taxa to interact (Strydom et al. 2023). They may also be used as informative priors of local364

interactions. Therefore, building a metaweb of probabilistic interactions may be an important first step before365

predicting networks at finer scales.366

In contrast to local networks, where interaction probabilities arise from the variability of interactions and the367

lack of information on the conditions, interaction probabilities in metawebs solely result from a lack of368

knowledge. This uncertainty arises due to insufficient interaction data, especially for taxa that have not yet been369

observed to co-occur, and uncertainties in trait-matching models. As data accumulates, interactions in370

metawebs should tend towards binarity, either taking a value of 1 (observing an interaction at least once) or371

approaching 0 (repeatedly failing to observe an interaction between co-occurring taxa). Confidently observing372

an interaction once confirms its biological feasibility, but failing to observe it (even on multiple occasions) does373

not ensure that it is non-feasible (e.g., due to false negatives, Catchen et al. 2023). While local interaction374

probabilities are irreducible because of local variability, the uncertainty of regional interactions reduces to 0375

with the addition of information. Moreover, although neutrally forbidden interactions (i.e., forbidden376

interactions between rare species, Canard et al. 2012) have low probability values in local networks, they would377

have a probability of 1 in the metaweb (this is because the species’ traits could support an interaction if they378
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were to encounter each other at high enough abundances). Likewise, non-co-occurring taxa may have a379

non-zero probability of interaction in the metaweb. Regional interaction probabilities are thus fundamentally380

different from local interaction probabilities, both in terms of uncertainty sources and probability values.381

The extent of sampling effort influences our evaluation of probabilities of regional interactions, as sampling382

over a larger area or for a longer duration enables us to capture a greater number of regional interactions383

(McLeod et al. 2021). However, in contrast with local networks of probabilistic interactions, regional384

interactions are not evaluated for any particular local context, which impacts how they scale with space and385

time. In Box 3, we discuss the differences in spatial and temporal scaling of regional interactions compared to386

local interactions. We do so using the host-parasite networks of Kopelke et al. (2017) as an illustration of387

spatial scaling. Understanding the effect of spatial and temporal scales (including sampling effort) on local and388

regional interaction probabilities is important for effectively propagating uncertainty across scales and389

highlighting the fundamental differences between these two types of networks.390

What are regional probabilistic interactions conditioned on?391

Regional interactions describing biological feasibility are conditioned on traits392

Potential interactions describe what we refer to as the biological feasibility of interactions, which is based solely393

on the regional traits distributions 𝑇𝑖 and 𝑇𝑗 of taxa 𝑖 and 𝑗, respectively. We define regional traits distributions394

as the range of phenotypes that a taxon can express across various environments. Local traits 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘,395

which vary spatially and temporally because of phenotypic plasticity and local environmental variability (Berg396

& Ellers 2010), are a subset of regional traits. A probability of potential interaction in a metaweb 𝑀 describing397

the biological feasibility of interactions may be expressed as:398

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗), (11)

which, in contrast with local networks, is not conditioned on any spatial, temporal, co-occurrence or399

environmental variables (Tbl. 1). Because phylogenetically close species often share similar traits, we should400

expect that closely related species will have similar interacting partners. We can thus use phylogeny to predict401

species traits and infer regional interactions (Eklöf & Stouffer 2016; Stouffer et al. 2012; Strydom et al. 2022).402

The taxonomic level at which interactions are evaluated also influences the distribution of regional traits.403
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However, as explained in Box 4, there is no fundamental difference in the taxonomic scaling of regional and404

local interactions (i.e., how interaction probabilities change with taxonomic level) because they both depend on405

trait aggregation.406

The biological feasibility of interactions expresses our degree of belief that there exists at least one combination407

of phenotypes that could support an interaction if they were to encounter each other, assuming they had enough408

time to interact. Evaluating this probability is conducted without incorporating the environmental conditions409

under which they encounter each other into the model. It is the complement of the probability 𝑃(𝐹𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) of410

forbidden interactions (i.e., the probability that their traits do not support an interaction), which is based411

uniquely on biological traits:412

𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗) = 1 − 𝑃(𝐹𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (12)

For example, let 𝑖 be a western diamondback rattlesnake (Crotalus atrox) and 𝑗, a wood lemming (Myopus413

schisticolor). These two taxa never co-occur, the rattlesnake being adapted to warm regions of North America414

(Castoe et al. 2007) and the lemming, to northern habitats of Eurasia (Fedorov et al. 2008). As we lack direct415

observations of an interaction between these two species, we have to rely on expert knowledge or trait-matching416

models to estimate their probability of potential interaction. To accurately estimate this probability using417

trait-matching models, it is crucial to ensure that the set of traits considered reflects the overall traits418

distributions of both taxa. We could for instance consider their average body mass and the average phylogenetic419

distance of lemmings to rattlesnakes’ prey. Doing so, we might find a high probability of potential interaction420

based on these traits. This example illustrates how regional interactions describing biological feasibility may be421

estimated solely based on traits, without taking into account environmental conditions.422

Regional interactions describing ecological feasibility are conditioned on traits and environmental423

conditions424

The biological feasibility of interactions should not be confused with what we refer to as the ecological425

feasibility of interactions. A probability of potential interaction in a metaweb 𝑀∗ describing the ecological426

feasibility of interactions may be expressed as:427

𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸), (13)
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where 𝐸 is the environmental conditions under which potential interactions are evaluated (Tbl. 1). Unlike 𝐸𝑘,428

these environmental conditions do not represent conditions occurring at specific locations. Ecological429

feasibility represents the probability that two taxa interact if they were to encounter each other under given430

environmental conditions, assuming they had enough time to interact. Incorporating environmental conditions431

into a trait-matching model may be important when there is high covariance between the environment and traits.432

For instance, in our example involving rattlesnakes and lemmings, the probability of potential interaction433

between these two species may be low in most environmental conditions. Western diamondback rattlesnakes434

may be unactive under low temperatures (Kissner et al. 1997), whereas wood lemmings may have low tolerance435

to high temperatures (Kausrud et al. 2008). The probability that an interaction is ecologically feasible is always436

lower than the probability that it is biologically feasible, even across all environmental conditions:437

∫𝐸 𝑃(𝑀∗
𝑖,𝑗 |𝑇𝑖, 𝑇𝑗 , 𝐸)𝑑𝐸 ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (14)

This is because the biological feasibility of an interaction is a prerequisite for its ecological feasibility. In other438

words, biological feasibility is necessary but not sufficient for an interaction to be ecologically feasible. Our439

discussion of metawebs focuses on the biological feasibility of interactions since most methods developed for440

inferring probabilities of regional interactions do not explicitly take into account environmental conditions (e.g.,441

Strydom et al. 2022).442

How are regional probabilistic interactions estimated?443

Starting from a selected set of taxa, which are usually distributed within a broad region of interest, metawebs444

can be built using different data sources, including literature review (e.g., Maiorano et al. 2020), aggregated445

interaction data (e.g., Gravel et al. 2019; Saravia et al. 2022), trait-matching models (e.g., Shaw et al. 2024;446

Strydom et al. 2022), and expert knowledge. Every pair of taxa that have confidently been observed to interact447

at least once can be given a probability of 1 (i.e., 𝑃(𝑀𝑖,𝑗) = 1) since we know that they can interact. This differs448

from local networks of probabilistic interactions, where interaction events may remain stochastic (i.e.,449

𝑃(𝐿𝑖,𝑗,𝑘) < 1) even after empirically observing interactions due to their spatiotemporal variability. Interactions450

that were never observed typically have low probability values in local networks and vary from low to high451

values in metawebs, contingent upon taxa traits distributions (reaching 0 for forbidden links). The aggregation452

of model predictions and data from different sources thus tends to raise the number of potential interactions in453

24 of 43



metawebs.454

When using local interaction data to estimate probabilities of regional interactions, repeatedly failing to observe455

an interaction between two co-occurring taxa should decrease the probability that the interaction is biologically456

feasible. Using Bayes’ theorem, the probability that the interaction is biologically feasible given that it was457

never observed locally, 𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0), may be calculated as follows:458

𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0) =
𝑃(𝑂𝑖,𝑗,𝑘 = 0|𝑀𝑖,𝑗 = 1) × 𝑃(𝑀𝑖,𝑗 = 1)

𝑃(𝑂𝑖,𝑗,𝑘 = 0) . (15)

The reduction in the probability of regional interaction after considering that it was never observed locally (i.e.,459

𝑃(𝑀𝑖,𝑗 = 1|𝑂𝑖,𝑗,𝑘 = 0) < 𝑃(𝑀𝑖,𝑗 = 1)) occurs because 𝑃(𝑂𝑖,𝑗,𝑘 = 0|𝑀𝑖,𝑗 = 1) must be lower than 𝑃(𝑂𝑖,𝑗,𝑘 = 0),460

i.e. there is a higher chance of observing an interaction when it is biologically feasible.461

Observations of interactions may be false positives because of observation errors due to taxonomic462

misidentifications and ecological misinterpretations, such as those involving phylogenetically close species or463

cryptic species and interactions (Pringle & Hutchinson 2020). Likewise, forbidden interactions may be false464

negatives, e.g. if they have been evaluated based on unrepresentative or incomplete traits distributions.465

Employing Bayesian models proves valuable when estimating interaction probabilities in metawebs (e.g.,466

Bartomeus et al. 2016; Cirtwill et al. 2019). This improvement is achieved by updating prior information467

regarding the feasibility of interactions (e.g., experts’ prior assessments of interaction probabilities) with468

empirical data on interactions and traits. By improving our estimation of potential interaction probabilities, we469

may build more reliable metawebs that adequately reflect our uncertainty on the biological feasibility of470

interactions.471

Box 3: Spatial and temporal scaling of interactions

Local networks and metawebs have distinct relationships with space (area or volume) and time (sampling

effort or duration). Local probabilities of interaction scale both spatially and temporally, because local

interactions have more opportunities to be realized in larger areas and longer durations. In a larger

sampling area and duration, we increase the likelihood of sampling favorable conditions for interactions

to occur. If a local network of probabilistic interactions 𝐿1 with an area 𝐴1 is compared to a larger

network 𝐿0 with an area 𝐴0, and 𝐴1 is entirely nested within 𝐴0, interaction probabilities should be

lower in the smaller network, i.e. 𝑃(𝐿𝑖,𝑗,1|𝐴1 < 𝐴0) ≤ 𝑃(𝐿𝑖,𝑗,0|𝐴0). However, if 𝐴1 and 𝐴0 are disjoint,
472
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interaction probabilities could be higher in the smaller area, contingent upon local environmental and

biological conditions. In contrast, regional probabilities of interaction do not scale with space and time.

The probability of two taxa potentially interacting should be the same in all metawebs in which they are

present regardless of scale, provided that the data and methods used for estimation are consistent. This is

because they depend solely on the biological capacity of two taxa to interact, regardless of co-occurrence

and local environmental conditions. However, probabilities of regional interactions may change, tending

to become more definitive, with increased sampling effort.

In Fig. 3, we show how the expected number of local host-parasite interactions scales with the spatial

boundary of the network (represented by an expanding latitudinal window) in comparison with regional

interactions. We do so using the host-parasite networks of Kopelke et al. (2017). The increase in the

number of regional interactions is due to the inclusion of more species in a larger area. To ensure a

conservative comparison between aggregated local and regional networks, we employed equal interaction

probabilities (i.e., using 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1) in both types of network. This means that local interaction

probabilities could not increase further when aggregating them. Despite this, we notice that the total

number of regional interactions scales more rapidly than local interactions. This is because numerous

regional interactions involve species that never co-occur, and as a result, these interactions are not captured

in local networks. All data manipulation and methods are described in Appendix 1.
473
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Figure 3: Spatial scaling of interactions. Expected number of host-parasite interactions in a network
aggregating all (a) local and (b) regional probabilistic interactions within a latitudinal window of a given
width. Every dashed curve corresponds to a different window centered at a given latitude (color bar),
with the pink solid line representing the median number of interactions across windows. Heatmaps of the
expected number of (c) local and (d) regional interactions found in windows of specified width and position
(central latitude). Probabilities of regional interactions were obtained with a false positive rate of 5% and
a false negative rate of 10%. Local probabilistic interactions were derived from regional probabilistic
interactions by setting the value of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) (the local probability of interaction among potentially
interacting species) to 1. Aggregated local networks were obtained by aggregating both the species and
interactions found within a particular latitudinal window, with the values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) remaining at
their maximum value of 1.

474

Box 4: Taxonomic scaling of interactions

Given that our interpretation of the properties of ecological networks depends on their taxonomic level

(Guimarães 2020), investigating the taxonomic scaling of interactions (i.e., how interaction probabilities
475
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change with taxonomic level) is important. There are no inherent differences between the taxonomic

scaling of local and regional interactions. The taxonomic level of interactions impacts the definition

of nodes. Local and regional interaction probabilities are not directly conditioned on taxonomic scale.

However, some conditional variables (e.g., trait distribution) may covary with taxonomic scale. In such

cases, local and regional interaction probabilities would change taxonomically following the scaling of

these variables.

In both types of interactions, transitioning to a broader level of organization (e.g., from a species-level

network 𝑆 to a genus-level network 𝐺) can be done using interaction probabilities from finer scales. For

example, in a network with 𝑛1 species of genus 𝑔1 and 𝑛2 species of genus 𝑔2, one can calculate the

probability that at least one species from genus 𝑔1 interacts with at least one species from genus 𝑔2 (i.e.,

the probability that the genus-level interaction occurs) as follows:

𝑃(𝐺𝑔1,𝑔2) = 1 −
𝑛1
∏
𝑖=1

𝑛2
∏
𝑗=1

(1 − 𝑃(𝑆𝑔1,𝑖,𝑔2,𝑗 )), (16)

where 𝑔1,𝑖 and 𝑔2,𝑗 are the species of the corresponding genus and assuming independence between

species-level interactions. In contrast, a different approach is necessary when transitioning from a broader

to a finer level of organization. This is because the knowledge of an interaction between two genera does

not guarantee that all possible pairwise species combinations will also interact. One possible method is

to build a finer-scale network by generating probabilities of interaction through random sampling from a

beta distribution, parameterized by the broader-scale network.

Fundamentally, the taxonomic scaling of interactions involves aggregating interactions between

individuals into larger groups. Interaction probabilities at broader taxonomic scales should thus conform to

probabilities of interactions between individuals. For example, Canard et al. (2012) built a species-based

network using simulated individual-based networks. In local individual-based food webs, the probability

that two individuals interact reflects our degree of belief that one individual will consume the other.

Likewise, in local species-based food webs, the probability that two species interact represents our degree

of belief that at least one individual from the predator species will consume at least another individual

from the prey species. In that regard, taxonomic scaling is analogous to the spatial and temporal scaling

of interactions, as they all represent different ways to aggregate individuals into broader groups (either

spatially, temporally, or taxonomically).
476

28 of 43



Box 5: Sampling for binary interaction networks

Networks of binary interactions may be predicted by performing independent Bernoulli trials for each

probabilistic interaction. This is particularly useful when analyzing the structure of probabilistic

interaction networks in the absence of specific analytical formulas (Poisot et al. 2016), even though

it may introduce biases in our estimations when connectance is low (Chagnon 2015; Poisot & Gravel

2014). There are at least two techniques to sampling binary interaction networks across space, each

predicting a binary interaction network for each location 𝑘 within a given region. The first technique

involves performing a single Bernoulli trial for each pair of taxa based on their regional probability of

interaction:

𝑀𝑖,𝑗 ∼ Bernoulli(𝑃(𝑀𝑖,𝑗)).

In employing this technique, we predict a single metaweb of binary interactions for each simulation. Every

pair of taxa predicted to interact in this metaweb will be treated as interacting in all localized networks

where they co-occur, i.e. 𝐿𝑖,𝑗,𝑘 = 𝑀𝑖,𝑗 when 𝑋𝑖,𝑗,𝑘 = 1. This will result in local pairwise interactions

without spatial variation.

The second technique is to independently sample each local network of probabilistic interactions:

𝐿𝑖,𝑗,𝑘 ∼ Bernoulli(𝑃(𝐿𝑖,𝑗,𝑘)).

This can be achieved by first generating distinct probabilistic interaction networks for each location.

Because binary interactions are sampled independently for each location, this second technique captures

network structure across space and time more effectively. When sampling binary interactions from local

interaction probabilities, it is crucial to sample at the same spatial scale for which probabilities were

estimated to prevent systematic biases in predictions.

In Fig. 4, we compare the average connectance of binary interaction networks resulting from these two

sampling techniques. We sampled regional and local interactions from our host-parasite networks of

probabilistic interactions (Kopelke et al. 2017), generating a number of binary interaction network

realizations for each site in the dataset. These two sampling techniques yield different outcomes,

particularly for intermediate values of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) of 0.50, which represent instances where regional
477
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interactions do not consistently manifest locally (i.e., with the largest local variability). As anticipated,

we observe that sampling binary interactions from the metaweb tends to overestimate connectance on

average compared to sampling them from local networks (Fig. 4). We also observe an increase in the

variability of connectance when employing a single simulation (Fig. 4a-c, cross markers), which is a more

tangible representation of the process leading to the realization of local interactions in nature. All data

manipulation and methods are described in Appendix 1.

Figure 4: Connectance of sampled binary interaction networks. (a-c) Average connectance of
binary interaction networks obtained from the two sampling techniques for 20 randomly selected host-
parasite networks. Cross markers represent the connectance of a single sample for each network,
diamond markers the average connectance across 10 samples, hexagon markers the average connectance
across 50 samples, and the colored circles the average connectance across 100 samples (marker size
proportional to the number of samples). (d-f) Reduction in the mean squared logarithmic error between
the average connectance of binary interaction networks (all 233 host-parasite networks) obtained from
these two sampling techniques as the number of samples increases. The local probability of interaction
between potentially interacting species was set to three different values: (a,d) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 1.0,
(b,e) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 0.75, and (c,f) 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) = 0.50. Probabilities of regional interactions were
obtained with a false positive rate of 5% and a false negative rate of 10%. Regional samples were
obtained by randomly sampling binary interactions from the probabilistic interaction metaweb, and then
propagating this result to all local networks that include the species potentially engaged in the interactions.
Local samples were obtained by independently sampling binary interactions for each local network of
probabilistic interactions.

Both sampling techniques assume independence between interactions, which might not hold true in reality.
478
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Covariation among interactions could exist even if we do not explicitly condition interactions on others.

For example, an interaction between two taxa could be more probable when another interaction occurs.

The consequences of this assumption of independence on the prediction of network structure have yet to

be empirically examined.
479

Future perspectives480

In this contribution, we underline the importance of network documentation for adequately interpreting and481

manipulating probabilistic interaction data. The mathematical representation of probabilities and their statistical482

properties depend on the type of interactions (local or regional) and the conditions under which these483

interactions were evaluated. We show that local networks and metawebs of probabilistic interactions differ in484

their relationship to spatial and temporal scales (Box 3), with regional interactions remaining consistent across485

scales. In contrast with metawebs, local interactions are measured in a specific context (e.g., in a given area,486

time, and biological and environmental conditions) and depend on taxa co-occurrence. These differences bring487

to light the need to use probabilistic data with caution, for instance when generating network realizations of488

binary interactions across space (Box 5). Clear documentation describing the type of interaction and the489

variables used in their estimation are required to ensure adequate data manipulation. Sound data practices and490

foundations for probabilistic thinking in network ecology facilitate reliable assessments of the spatiotemporal491

variability and uncertainty of biotic interactions. Here we identify key research priorities for improving our492

understanding of probabilistic local and regional interactions.493

Predicting local networks from metawebs494

Metawebs are a valuable source of ecological information for predicting local networks across time and space.495

Local networks of binary interactions can be reconstructed by selecting a subset of taxa and interactions from496

the metaweb (Dunne 2006). Determining the list of taxa to select can be achieved empirically (e.g., observed497

occurrence data for a site) or numerically (e.g., species distribution models). As species composition is498

arguably easier to sample and predict than pairwise interactions, the primary challenge lies in deciding which499

interactions to select from the metaweb. Inferring the structure of local networks from the metaweb before500

predicting local pairwise interactions could hold promise (Strydom et al. 2021), considering that the structure501
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of local networks is constrained by the metaweb (Saravia et al. 2022).502

Inferring local networks of probabilistic interactions from a metaweb comes with its own set of challenges. For503

example, Dansereau et al. (2023) inferred spatially-explicit food webs from a metaweb of probabilistic trophic504

interactions between Canadian mammals. Their predicted localized food webs are downscaled versions of the505

metaweb (i.e., localized metawebs with the same interaction probabilities as those in the regional metaweb). To506

infer local networks as defined in this manuscript (i.e., describing local realizations of interactions), local507

interaction probabilities must be smaller than regional interaction probabilities. Inferring local networks from a508

metaweb by maintaining identical interaction probability values introduces systematic biases into the509

predictions, as discussed in Box 2 (unless networks are seen as downscaled metawebs).510

As suggested by McLeod et al. (2021), metawebs establish an upper limit for local interactions (similarly for511

metawebs of probabilistic interactions, Strydom et al. 2023). In other words, the probability that two taxa512

interact at a specific location and time is consistently lower or equal to the probability of their regional513

interaction, regardless of the conditional variables considered:514

𝑃(𝐿𝑖,𝑗,𝑘 |...) ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (17)

Moreover, the probability that two taxa possess the biological capacity to interact must be higher than the515

probability of them interacting at any location and time because they may never co-occur or encounter locally.516

Specifically, the cumulative probability of local interaction across all spatial, temporal, and environmental517

conditions must be less than the probability of regional interaction, i.e.518

∫𝐸𝑘
∫𝐴0

∫𝑡0
𝑃(𝐿𝑖,𝑗,𝑘 |𝐸𝑘, 𝐴0, 𝑡0) d𝑡0 d𝐴0 d𝐸𝑘 ≤ 𝑃(𝑀𝑖,𝑗 |𝑇𝑖, 𝑇𝑗). (18)

Estimating more precisely the probability 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗) that two taxa interact locally if they can potentially519

interact allows for improved predictions of local networks from the metaweb of probabilistic interactions. This520

task is challenging due to the variability of this probability across space and time, as well as its variability521

across pairwise interactions within a network. Using simple models of 𝑃(𝐿𝑖,𝑗,𝑘 |𝑀𝑖,𝑗), as shown in Appendix 1,522

represents an initial step toward the overarching objective of reconstructing local networks from metawebs.523
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Quantifying and reducing interaction uncertainty524

While sampling biological communities decreases the uncertainty of interactions by accumulating evidence for525

their feasibility and local realization, there is a limit to how much we can reduce uncertainty. In metawebs,526

probabilities reflect our limited knowledge of interactions, which is expected to improve with a larger volume of527

data. Regional interactions should become more definitive (with probabilities approaching 0 or 1) as we528

investigate various conditions, including different combinations of species traits.529

In comparison, local interaction probabilities represent both our knowledge uncertainty and their spatiotemporal530

variability. Owing to environmental heterogeneity, there will invariably be instances in which an interaction531

occurs and others in which it does not, across different times and locations, irrespective of the extent to which532

we can improve our knowledge of its biological feasibility and the local conditions that facilitate its occurrence.533

When local networks describe probabilities of observing interactions rather than their realization, we must also534

consider observation uncertainty (sampling error) as an additional source of uncertainty. Quantifying and535

partitioning this uncertainty will enable us to make more accurate predictions about ecological interactions at536

various spatial and temporal scales, and to identify priority sampling locations to reduce this uncertainty. This537

will prove to be of vital importance as our time to understand nature runs out, especially at locations where the538

impacts of climate change and habitat loss hit harder.539

Relaxing the independence assumption540

Estimating local interaction probabilities independently for each taxa pair and assembling them into a network541

of probabilistic interactions comes with limitations. Predicting local networks of binary interactions based on542

these interaction probabilities assumes independence among interactions, a condition seldom respected in543

practice (Golubski & Abrams 2011). Relaxing this assumption is the next logical step in the stochastic544

representation of interactions.545

A more accurate representation of the uncertainty and variability of ecological networks involves creating546

probabilistic networks (𝑃(𝐿𝑘) and 𝑃(𝑀)), rather than networks of probabilistic interactions (𝑃(𝐿𝑖,𝑗,𝑘) and547

𝑃(𝑀𝑖,𝑗)). Probabilistic networks describe the probability that a particular network of binary (or quantitative)548

interactions (its whole adjacency matrix) is realized. For example, Young et al. (2021) used a Bayesian549

approach to estimate the probability of different plant-pollinator network structures derived from imperfect550

observational data. A probability distribution of ecological networks may also be derived using the principle of551
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maximum entropy given structural constrained (e.g., Cimini et al. 2019; Park & Newman 2004).552

Regardless of the method used, generating probabilistic local networks could lead to more accurate predictions553

of local networks of binary interactions by bypassing the independence assumption. Probabilistic networks554

could serve as an alternative to null hypothesis significance testing when comparing the structure of a local555

network to some random expectations or, as done in Pellissier et al. (2018) and Box 2, to the metaweb. These556

random expectations are typically derived by performing a series of Bernoulli trials on probabilistic557

interactions, assuming independence, to generate a distribution of networks of binary interactions to calculate558

their structure (Poisot et al. 2016). One could instead compare the likelihood of an observed network to the one559

of the most likely network structure (according to the probabilistic network distribution), thereby directly560

obtaining a measure of discrepancy of the empirical network. Generating probabilistic ecological networks561

represents a tangible challenge, one that, in the coming years, promises to unlock doors to more advanced and562

adequate analyses of ecological networks.563
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